To improve quality of numerical models used in simulations of a fluidized bed gasifier at any scale, the sources of uncertainty in the simulation have to be identified and quantified. There are several sources of uncertainty that can affect any simulation result and scale up process such as uncertainty in the model input values, uncertainty in the reaction models and kinetic rates, uncertainty in selection of the appropriate numerical models affecting the hydrodynamics, uncertainty in selection of adequate computational grid resolution (uncertainty due to discretization error), uncertainty in the selection of proper numerical techniques required for solution of the discretized conservation equations, and many more. The current study aims to investigate the effect that reaction models for gasification, char oxidation, carbon monoxide oxidation, and water gas shift will have on the syngas composition at different grid resolution, along with bed temperature, which affects the reactions. The global sensitivity analysis conducted showed that among various reaction models employed for water gas shift, gasification, char oxidation, the choice of reaction model for water gas shift has the greatest influence on syngas composition, with gasification reaction model being second. Syngas composition also shows a small sensitivity to temperature of the bed. The hydrodynamic behavior of the bed did not change beyond grid spacing of 18 times the particle diameter. However, the syngas concentration continued to be affected by the grid resolution as low as 9 times the particle diameter. This is due to a better resolution of the phasic interface between the gas and solid that leads to stronger heterogeneous reactions.

References

References
1.
Gel
,
A.
,
Garg
,
R.
,
Tong
,
C.
,
Shahnam
,
M.
, and
Guenther
,
C.
,
2013
, “
Applying Uncertainty Quantification to Multiphase Flow Computational Fluid Dynamics
,”
Powder Technol.
,
242
, pp.
27
39
.
2.
Gel
,
A.
,
Li
,
T.
,
Gopalan
,
B.
,
Shahnam
,
M.
, and
Syamlal
,
M.
,
2013
, “
Validation and Uncertainty Quantification of a Multiphase Computational Fluid Dynamics Model
,”
Ind. Eng. Chem. Res.
,
52
(
33
), pp.
11424
11435
.
3.
Gel
,
A.
,
Shahnam
,
M.
,
Musser
,
J.
,
Subramaniyan
,
A. K.
, and
Dietiker
,
J.-F.
,
2016
, “
Non-Intrusive Uncertainty Quantification of Computational Fluid Dynamics Simulations of a Bench-Scale Fluidized Bed Gasifier
,”
Ind. Eng. Chem. Res.
,
55
(
48
), pp.
12477
12490
.
4.
Lane
,
W. A.
,
Storlie
,
C. B.
,
Montgomery
,
C. J.
, and
Ryan
,
E. M.
,
2014
, “
Numerical Modeling and Uncertainty Quantification of a Bubbling Fluidized bed With Immersed Horizontal Tubes
,”
Powder Technol.
,
253
, pp.
733
743
.
5.
NETL Multiphase Flow Science
,
2016
, “
MFIX Software Suite Website
,” National Energy Technology Laboratory, Morgantown, WV, http://Mfix.Netl.doe.gov
6.
Karimipour
,
S.
,
Gerspacher
,
R.
,
Gupta
,
R.
, and
Spiteri
,
R. J.
,
2013
, “
Study of Factors Affecting Syngas Quality and Their Interactions in Fluidized bed Gasification of Lignite Coal
,”
Fuel
,
103
, pp.
308
320
.
7.
Subramaniyan
,
A. K.
,
Wang
,
L.
,
Beeson
,
D.
,
Nelson
,
J.
,
Berg
,
R.
, and
Cepress
,
R.
,
2011
, “
A Comparative Study on Accuracy and Efficiency of Metamodels for Large Industrial Datasets
,”
ASME
Paper No. GT2011-46610.
8.
Subramaniyan
,
A. K.
,
Kumar
,
N. C.
, and
Wang
,
L.
,
2014
, “
Probabilistic Validation of Complex Engineering Simulations With Sparse Data
,”
ASME
Paper No. GT2014-26257.
9.
Kumar
,
N. C.
,
Subramaniyan
,
A. K.
, and
Wang
,
L.
,
2012
, “
Improving High-Dimensional Physics Models Through Bayesian Calibration With Uncertain Data
,”
ASME
Paper No. GT2012-69058.
10.
Kumar
,
N. C.
,
Subramaniyan
,
A. K.
,
Wang
,
L.
, and
Wiggs
,
G.
,
2013
, “
Calibrating Transient Models With Multiple Responses Using Bayesian Inverse Techniques
,”
ASME
Paper No. GT2013-95857.
11.
Saltelli
,
A.
,
Ratto
,
M.
,
Andres
,
T.
,
Campolongo
,
F.
,
Cariboni
,
J.
,
Gatelli
,
D.
,
Saisana
,
M.
, and
Tarantola
,
S.
,
2008
,
Global Sensitivity Analysis: The Primer
,
Wiley
,
New York
.
12.
Syamlal
,
M.
,
Rogers
,
W.
, and
O'Brien
,
T. J.
, “
Mfix Documentation Theory Guide
,” Technical Report, Report No. DOE/METC-94/1004.
13.
Benyahia
,
S.
,
Syamlal
,
M.
, and
O'Brien
,
T. J.
,
2012
, “
Summary of Mfix Equations 2012-1
,” National Energy Technology Laboratory, Morgantown, WV, https://mfix.netl.doe.gov/download/mfix/mfix_current_documentation/MFIXEquations2012-1.pdf
14.
Niksa
,
S.
,
1997
,
PC Coal Lab Version 4.1: User Guide and Tutorial
,
Niksa Energy Associates LLC
,
Belmont, CA
.
15.
Field
,
M.
,
Gill
,
D.
,
Morgan
,
B.
, and
Hawksley
,
P.
,
1967
,
Combustion of Pulverized Coal
,
British Coal Utilisation Research Association (BCURA)
,
Leatherhead, UK
.
16.
DeSai
,
P.
, and
Wen
,
C.
,
1978
, “
Computer Modeling of Merc's Fixed Bed Gasifier
,” Technical Report, Report No. MERC/CR-78/3.
17.
Howard
,
J. B.
,
1981
, “
Fundamentals of Coal Pyrolysis and Hydropyrolysis
,”
Chemistry of Coal Utilization
, 2nd Supplementary Volume, Wiley, Hoboken, NJ, pp.
665
784
.
18.
Westbook
,
C. K.
, and
Dryer
,
F. L.
,
1981
, “
Simplified Reaction Mechanisms for the Oxidation of Hydrocarbon Fuels in Flames
,”
Combust. Sci. Technol.
,
27
(
1–2
), pp.
31
43
.
19.
Peters
,
N.
,
1979
, “
Premixed Burning in Diffusion Flames—the Flame Zone Model of Libby and Economos
,”
Int. J. Heat Mass Transfer
,
22
(
5
), pp.
691
703
.
20.
Dryer
,
F. L.
, and
Glassman
,
I.
,
1973
, “
High Temperature Oxidation of CO and CH4
,”
14th International Symposium on Combustion
, The Combustion Institute, pp.
987
1003
.
21.
Chen
,
W.
,
Sheu
,
F.
, and
Savage
,
R.
,
1987
, “
Catalytic Activity of Coal ash on Steam Methane Reforming and Water-gas Shift Reactions
,”
Fuel Process. Technol.
,
16
(
3
), pp.
279
288
.
22.
Biba
,
V.
,
Macak
,
J.
,
Klose
,
E.
, and
Malecha
,
J.
,
1978
, “
Mathematical Model for the Gasification of Coal Under Pressure
,”
Ind. Eng. Chem. Process Des. Dev.
,
17
(
1
), pp.
92
98
.
23.
Dinh
,
T.
,
Nourgaliev
,
R.
, and
Theofanous
,
T.
,
2003
, “
Understanding the Ill-Posed Two-Fluid Model
,”
The 10th International Topical Meeting on Nuclear Reactor Thermal Hydraulics
(
NURETH10
), Seoul, South Korea, Oct. 5–9.http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.517.5412&rep=rep1&type=pdf
24.
Fullmer
,
W.
, and
Hrenya
,
C.
,
2016
, “
Quantitative Assessment of Fine-Grid Kinetic-Theory-Based Predictions of Mean-Slip in Unbounded Fluidization
,”
AIChE J.
,
62
(
1
), pp.
11
17
.
25.
Park
,
J.-S.
,
1994
, “
Optimal Latin-Hypercube Designs for Computer Experiments
,”
J. Stat. Plann. Inference
,
39
(
1
), pp.
95
111
.
26.
Forrester
,
A.
,
Sobester
,
A.
, and
Keane
,
A.
,
2008
,
Engineering Design via Surrogate Modelling: A Practical Guide
,
Wiley
,
New York
.
27.
Koziel
,
S.
, and
Leifsson
,
L.
,
2013
, “
Surrogate-Based Modeling and Optimization
,”
Applications in Engineering
,
Springer-Verlag
,
New York
.
You do not currently have access to this content.