The Sedov blast wave is of great utility as a verification problem for hydrodynamic methods. The typical implementation uses an energized cell of finite dimensions to represent the energy point source. This approximation can be avoided by directly finding the effects of the energy source as a boundary condition (BC). The proposed method transforms the Sedov problem into an outward moving radial piston problem with a time-varying velocity. A portion of the mesh adjacent to the origin is removed and the boundaries of this hole are forced with the velocities from the Sedov solution. This verification test is implemented on two types of meshes, and convergence is shown. The results from the typical initial condition (IC) method and the new BC method are compared.

References

References
1.
von Neumann
,
J.
,
1963
, “
The Point Source Solution
,”
John von Neumann: Collected Works
,
6th ed.
,
A.
Taub
, ed.,
Pergamon Press
,
Elmsford, NY
, pp.
219
237
.
2.
Taylor
,
G.
,
1950
, “
The Formation of a Blast Wave by a Very Intense Explosion. II. The Atomic Explosion of 1945
,”
Proc. R. Soc. London, Ser. A
,
201
(
1065
), pp.
175
186
.
3.
Sedov
,
L. I.
,
1959
,
Similarity and Dimensional Analysis in Mechanics
,
Academic Press
,
New York
.
4.
Chevalier
,
R. A.
,
1976
, “
The Hydrodynamics of Type II Supernovae
,”
Astrophys. J.
,
207
, pp.
207
872
.
5.
Leonard
,
T. A.
, and
Mayer
,
F.
,
1975
, “
Helium Blastwave Measurements of Laser-Heated Microshell Targets
,”
J. Appl. Phys.
,
46
(
8
), pp.
3562
3565
.
6.
Kamm
,
J.
,
2000
, “
Evaluation of the Sedov–von Neumann–Taylor Blast Wave Solution
,” Los Alamos National Laboratory, Los Alamos, NM,
Technical Report No. LA-UR-00-6055
.
7.
Noh
,
W. F.
,
1987
, “
Errors for Calculations of Strong Shocks Using an Artificial Viscosity and an Artificial Heat Flux
,”
J. Comput. Phys.
,
72
(
1
), pp.
78
120
.
8.
Burton
,
D. E.
,
1994
, “
Multidimensional Discretization of Conservation Laws for Unstructured Polyhedral Grids
,”
2nd International Workshop on Analytical Methods and Process Optimization in Fluid and Gas Mechanics
, Arzamas, Russia, Sept. 10–16, pp. 1–26.
9.
Caramana
,
E.
,
Burton
,
D.
,
Shashkov
,
M.
, and
Whalen
,
P.
,
1998
, “
The Construction of Compatible Hydrodynamic Algorithms Utilizing Conservation of Total Energy
,”
J. Comput. Phys.
,
146
(
1
), pp.
227
262
.
10.
Burton
,
D. E.
,
2007
, “
Lagrangian Hydrodynamics in the FLAG Code
,” Los Alamos National Laboratory, Los Alamos, NM,
Technical Report No. LA-UR-07-7547
.
11.
Morgan
,
N. R.
,
Lipnikov
,
K. N.
,
Burton
,
D. E.
, and
Kenamond
,
M. A.
,
2014
, “
A Lagrangian Staggered Grid Godunov-Like Approach for Hydrodynamics
,”
J. Comput. Phys.
,
259
, pp.
568
597
.
12.
Kamm
,
J. R.
, and
Timmes
,
F. X.
,
2007
, “
On Efficient Generation of Numerically Robust Sedov Solutions
,” Los Alamos National Laboratory, Los Alamos, NM,
Technical Report No. LA-UR-07-2849
.
13.
Landau
,
L. D.
, and
Lifshitz
,
E. M.
,
1959
,
Fluid Mechanics
,
Pergamon Press
,
Elmsford, NY
, pp.
392
396
.
14.
Bogacki
,
P.
, and
Shampine
,
L.
,
1989
, “
A 3(2) Pair of Runge–Kutta Formulas
,”
Appl. Math. Lett.
,
2
(
4
), pp.
321
325
.
15.
Doebling
,
S. W.
, and
Ramsey
,
S. D.
,
2013
, “
Impact of Artificial Viscosity Models on Verification Assessment of a Lagrangian Hydrodynamics Code Using the Sedov Problem
,” American Society of Mechanical Engineers 2013 Verification & Validation Symposium.
16.
Roache
,
P. J.
,
1998
, “
Verification of Codes and Calculations
,”
AIAA J.
,
36
(
5
), pp.
696
702
.
You do not currently have access to this content.