Using a global optimization evolutionary algorithm (EA), propagating aleatory and epistemic uncertainty within the optimization loop, and using computational fluid dynamics (CFD), this study determines a design for a 3D tractor-trailer base (back-end) drag reduction device that reduces the wind-averaged drag coefficient by 41% at 57 mph (92 km/h). Because it is optimized under uncertainty, this design is relatively insensitive to uncertain wind speed and direction and uncertain deflection angles due to mounting accuracy and static aeroelastic loading. The model includes five design variables with generous constraints, and this study additionally includes the uncertain effects on drag prediction due to truck speed and elevation, steady Reynolds-averaged Navier–Stokes (RANS) approximation, and numerical approximation. This study uses the Design Analysis Kit for Optimization and Terascale Applications (DAKOTA) optimization and uncertainty quantification (UQ) framework to interface the RANS flow solver, grid generator, and optimization algorithm. The computational model is a simplified full-scale tractor-trailer with flow at highway speed. For the optimized design, the estimate of total predictive uncertainty is +15/−42%; 8–10% of this uncertainty comes from model form (computation versus experiment); 3–7% from model input (wind speed and direction, flap angle, and truck speed); and +0.0/−28.5% from numerical approximation (due to the relatively coarse, 6 × 106 cell grid). Relative comparison of designs to the no-flaps baseline should have considerably less uncertainty because numerical error and input variation are nearly eliminated and model form differences are reduced. The total predictive uncertainty is also presented in the form of a probability box, which may be used to decide how to improve the model and reduce uncertainty.

References

References
1.
Airy
,
G. B.
,
1875
,
On the Algebraical and Numerical Theory of Errors of Observations and the Combination of Observations
,
2nd ed.
,
MacMillan
,
London
.
2.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
,
1
(
1
), pp.
3
17
.
3.
Mason
,
W. T.
, Jr.
, and
Beebe
,
P. S.
,
1978
, “
The Drag Related Flowfield Characteristics of Trucks and Buses
,”
Symposium on Aerodynamic Drag Mechanisms of Bluff Bodies and Road Vehicles, General Motors Research Laboratories
,
Plenum Press
,
Warren, MI
.
4.
Cooper
,
K. R.
,
2003
, “
Truck Aerodynamics Reborn—Lessons From the Past
,”
SAE
Technical Paper No. 2003-01-3376.
5.
Leuschen
,
J.
, and
Cooper
,
K. R.
,
2006
, “
Full-Scale Wind Tunnel Tests of Production and Prototype, Second-Generation Aerodynamic Drag-Reducing Devices for Tractor-Trailers
,”
SAE
Technical Paper No. 2006-01-3456.
6.
SAE
,
1981
, “
SAE Wind Tunnel Test Procedure for Trucks and Buses
,” SAE Recommended Practice, SAE International, Warrendale, PA, Standard No. SAE J1252_201207.
7.
SAE
,
2012
, “
Fuel Consumption Test Procedure—Type II
,” SAE International, Warrendale, PA, Standard No. J1321_201202.
8.
STEMCO Ip
,
2016
, “
Aerodynamics 101
,” Accessed Mar. 30, http://www.stemco.com/video-gallery/aerodynamics-101 and http://www.stemco.com/product/trailertail
9.
Cooper
,
K. R.
,
1985
, “
The Effect of Front-Edge Rounding and Rear-Edge Shaping on the Aerodynamic Drag of Bluff Vehicles in Ground Proximity
,”
SAE
Technical Paper No. 850288.
10.
Storms
,
B. L.
,
Ross
,
J. C.
,
Heineck
,
J. T.
,
Walker
,
S. M.
,
Driver
,
D. M.
, and
Zilliac
,
G. G.
,
2001
, “
An Experimental Study of the Ground Transportation System (GTS) Model in the NASA Ames 7 by 10-ft Wind Tunnel
,”
Report No. NASA/TM-2001-209621
.
11.
Lanser
,
W. R.
,
Ross
,
J. C.
, and
Kaufman
,
A. E.
,
1991
, “
Aerodynamic Performance of a Drag Reduction Device on a Full-Scale Tractor/Trailer
,”
SAE
Technical Paper No. 912125.
12.
Visser
,
K. D.
,
Grover
,
K.
, and
Marin
,
L. E.
,
2011
, “
Sealed AFT Cavity Drag Reducer
,”
U.S. Patent No. 8,079,634
.
13.
Browand
,
F.
,
Radovich
,
C.
, and
Boivin
,
M.
,
2005
, “
Fuel Savings by Means of Flow Attached to the Base of a Trailer: Field Test Results
,”
SAE
Technical Paper No. 2005-01-1016.
14.
Hsu
,
T.-Y.
,
Hammache
,
M.
, and
Browand
,
F.
,
2004
, “
Base Flaps and Oscillatory Perturbations to Decrease Base Drag
,”
The Aerodynamics of Heavy Vehicles: Trucks, Buses, and Trains
(Lecture Notes in Applied and Computational Mechanics), Vol.
19
,
R.
McCallen
,
F.
Browand
, and
J.
Ross
, eds.,
Springer
,
Berlin
, pp.
303
316
.
15.
Ortega
,
J. M.
, and
Salari
,
K.
,
2004
, “
An Experimental Study of Drag Reduction Devices for a Trailer Underbody and Base
,”
AIAA
Paper No. 2004-2252.
16.
Hsu
,
F.-H.
, and
Davis
,
R. L.
,
2010
, “
Drag Reduction of Tractor-Trailers Using Optimized Add-On Devices
,”
ASME J. Fluids Eng.
,
132
(
8
), p.
084504
.
17.
Oberkampf
,
W. L.
, and
Roy
,
C. J.
,
2010
,
Verification and Validation in Scientific Computing
,
Cambridge University Press
,
Cambridge, UK
.
18.
Roy
,
C. J.
, and
Oberkampf
,
W. L.
,
2011
, “
A Comprehensive Framework for Verification, Validation, and Uncertainty Quantification in Scientific Computing
,”
Comput. Methods Appl. Mech. Eng.
,
200
(25–28), pp.
2131
2144
.
19.
Freeman
,
J. A.
, and
Roy
,
C. J.
,
2012
, “
Application of Optimization Under Uncertainty: 2-d Tractor-Trailer Base Flaps
,”
AIAA
Paper No. 2012-0671.
20.
Adams
,
B. M.
,
Bohnhoff
,
W. J.
,
Dalbey
,
K. R.
,
Eddy
,
J. P.
,
Eldred
,
M. S.
,
Gay
,
D. M.
,
Haskell
,
K.
,
Hough
,
P. D.
, and
Swiler
,
L. P.
,
2009
, “
DAKOTA, a Multilevel Parallel Object-Oriented Framework for Design Optimization, Parameter Estimation, Uncertainty Quantification, and Sensitivity Analysis: Version 5.0 User's Manual
,” Sandia Technical Report No. SAND2010-2183.
21.
Pointwise
,
2006
, “
Gridgen Version 15 User Manual
,” Pointwise, Fort Worth, TX.
22.
Cobalt Solutions, LLC
,
2011
, “
Cobalt Version 5.2 User's Manual
,” 2011, Cobalt Solutions, LLC, Springfield, OH.
23.
Freight Performance Measures Integrated Query Tool (FPMweb)
,” Federal Highway Administration and American Transportation Research Institute, Accessed Mar. 30,
2016
, https://www.freightperformance.org/fpmweb/default.aspx
24.
Gutierrez
,
W. T.
,
Hassan
,
B.
,
Croll
,
R. H.
, and
Rutledge
,
W. H.
,
1996
, “
Aerodynamics Overview of the Ground Transportation Systems (GTS) Project for Heavy Vehicle Drag Reduction
,”
SAE
Technical Paper No. 960906.
25.
Dellinger
,
D.
,
2008
, “
Average Wind Speed
,” National Oceanic and Atmospheric Administration, Accessed June 19, 2012, http://lwf.ncdc.noaa.gov/oa/climate/online/ccd/avgwind.html
26.
Doyle
,
J. B.
,
Hartfield
,
R. J.
, and
Roy
,
C. J.
,
2008
, “
Aerodynamic Optimization for Freight Trucks Using a Genetic Algorithm and CFD
,”
AIAA
Paper No. 2008-0323.
27.
Federal Highway Administration
,
2004
, “
Truck Size and Weight, Route Designations—Length, Width and Weight Limitations: Exclusions From Length and Width Determinations, Code of Federal Regulations, 23
,” U.S. Department of Transportation, Washington, DC, Chap. 1, Part 658.
28.
Grismer
,
M. J.
,
Strang
,
W. Z.
,
Tomaro
,
R. F.
, and
Witzeman
,
F. C.
,
1998
, “
Cobalt: A Parallel, Implicit, Unstructured Euler/Navier–Stokes Solver
,”
Adv. Eng. Software
,
29
(
3–6
), pp.
365
373
.
29.
Forsythe
,
J. R.
,
Strang
,
W. Z.
, and
Hoffmann
,
K. A.
,
2000
, “
Validation of Several Reynolds-Averaged Turbulence Models in a 3-D Unstructured Grid Code
,”
AIAA
Paper No. 2000-2552.
30.
Freeman
,
J. A.
, and
Roy
,
C. J.
,
2014
, “
Verification and Validation of Reynolds-Averaged Navier–Stokes Turbulence Models for External Flow
,”
Aerosp. Sci. Technol.
,
32
(
1
), pp.
84
93
.
31.
Basara
,
B.
, and
Tibaut
,
P.
,
2004
, “
Time Dependent Versus Steady State Calculations of External Aerodynamics
,”
The Aerodynamics of Heavy Vehicles: Trucks, Buses, and Trains
(Lecture Notes in Applied and Computational Mechanics), Vol.
19
,
R.
McCallen
,
F.
Browand
, and
J.
Ross
, J., eds.,
Springer
,
Berlin
, pp.
107
117
.
32.
Roy
,
C. J.
,
Payne
,
J. L.
, and
McWherter-Payne
,
M. A.
,
2006
, “
RANS Simulations of a Simplified Tractor/Trailer Geometry
,”
ASME J. Fluids Eng.
128
(
5
), pp.
1083
1089
.
33.
Maddox
,
S.
,
Squires
,
K. D.
,
Wurtzler
,
K. E.
, and
Forsythe
,
J. R.
,
2004
, “
Detached-Eddy Simulation of the Ground Transportation System
,”
The Aerodynamics of Heavy Vehicles: Trucks, Buses, and Trains
(Lecture Notes in Applied and Computational Mechanics), Vol.
19
,
R.
McCallen
,
F.
Browand
, and
J.
Ross
, eds.,
Springer
,
Berlin
, pp.
89
104
.
34.
Pointer
,
D.
,
Sofu
,
T.
,
Chang
,
J.
, and
Weber
,
D.
,
2009
, “
Applicability of Commercial CFD Tools for Assessment of Heavy Vehicle Aerodynamic Characteristics
,”
The Aerodynamics of Heavy Vehicles II: Trucks, Buses, and Trains
(Lecture Notes in Applied and Computational Mechanics), Vol.
41
,
F.
Browand
,
R.
McCallen
, and
J.
Ross
, eds.,
Springer
,
Berlin
, pp.
349
361
.
35.
Roy
,
C. J.
, and
Ghuge
,
H. A.
,
2009
, “
Detached Eddy Simulations of a Simplified Tractor/Trailer Geometry
,”
The Aerodynamics of Heavy Vehicles II: Trucks, Buses, and Trains
(Lecture Notes in Applied and Computational Mechanics), Vol.
41
,
F.
Browand
,
R.
McCallen
, and
J.
Ross
, eds.,
Springer
,
Berlin
, pp.
363
381
.
36.
Sreenivas
,
K.
,
Mitchell
,
B.
,
Nichols
,
S.
,
Hyams
,
D.
, and
Whitfield
,
D.
,
2009
, “
Computational Simulation of the GCM Tractor-Trailer Configuration
,”
The Aerodynamics of Heavy Vehicles II: Trucks, Buses, and Trains
(Lecture Notes in Applied and Computational Mechanics), Vol.
41
,
F.
Browand
,
R.
McCallen
, and
J.
Ross
, eds.,
Springer
,
Berlin
, pp.
325
338
.
37.
Fluent, Inc.,
2006
, “
Determining Turbulence Parameters, Fluent 6.3 User''s Guide
,” Fluent, Canonsburg, PA, Section 7.2.2.
38.
Holmes
,
J. D.
, “
Atmospheric Boundary Layers and Turbulence
,” Hurricane Engineering, Louisiana State University, Accessed Sept. 27, 2011, http://www.hurricaneengineering.lsu.edu/CourseMat/03Lect6BoundLayer.ppt
39.
Socolofsky
,
S. A.
, and
Jirka
,
G. H.
, “
Atmospheric Mixing
,” Coastal and Ocean Engineering Division, Texas A&M University, Accessed Mar. 30, 2016, http://ceprofs.civil.tamu.edu/ssocolofsky/cven489/Downloads/Book/Ch6.pdf
40.
Arora
,
J. S.
,
2004
,
Introduction to Optimum Design
,
2nd ed.
,
Elsevier Academic Press
,
San Diego, CA
.
41.
Eddy
,
J.
, and
Lewis
,
K.
,
2001
, “
Effective Generation of Pareto Sets Using Genetic Programming
,”
ASME
Paper No. DETC2001/DAC-21094.
42.
Janiga
,
G.
,
2008
, “
A Few Illustrative Examples of CFD-Based Optimization: Heat Exchanger, Laminar Burner and Turbulence Modeling
,”
Optimization and Computational Fluid Dynamics
,
D.
Thévenin
, and
G.
Janiga
, eds.,
Springer-Verlag
,
Berlin
, pp.
17
59
.
43.
Dumas
,
L.
,
2008
, “
CFD-Based Optimization for Automotive Applications
,”
Optimization and Computational Fluid Dynamics
,
D.
Thévenin
, and
G.
Janiga
, eds.,
Springer-Verlag
,
Berlin
, pp.
191
215
.
44.
Consolidated Hardware
,” Department of Defense High-Performance Computing Modernization Program, Accessed Mar. 30,
2016
, https://centers.hpc.mil/consolidated/hardware.html
45.
Schetz
,
J. A.
,
1993
,
Boundary Layer Analysis
,
Prentice-Hall
,
NJ
.
46.
Annual Vehicle Miles of Travel by Highway Category and Vehicle Type
,”
2013
, Table VM-1, Highway Statistics, Office of Highway Patrol Information, Federal Highway Administration, U.S. Department of Transportation, Accessed Oct. 29, 2015, http://www.fhwa.dot.gov/policyinformation/statistics/2013/vm1.cfm
47.
U.S. On-Highway Diesel Fuel Prices
,”
2015
, U.S. Energy Information Administration, Accessed Oct. 29, 2015, http://www.eia.gov/petroleum/gasdiesel
48.
McCallen
,
R.
,
Couch
,
R.
,
Hsu
,
J.
,
Browand
,
F.
,
Hammache
,
M.
,
Leonard
,
A.
,
Brady
,
M.
,
Salari
,
K.
,
Rutledge
,
W.
,
Ross
,
J.
,
Storms
,
B.
,
Heineck
,
J. T.
,
Driver
,
D.
,
Bell
,
J.
, and
Zilliac
,
G.
,
1999
, “
Progress in Reducing Aerodynamic Drag for Higher Efficiency of Heavy Duty Trucks (Class 7–8
),” Office of Scientific and Technical Information, U.S. Department of Energy,
SAE
Paper No. 1999-01-2238.
49.
Cummings
,
R. M.
,
Morton
,
S. A.
, and
McDaniel
,
D. R.
,
2008
, “
Experiences in Accurately Predicting Time-Dependent Flows
,”
Prog. Aerosp. Sci.
,
44
(
4
), pp.
241
257
.
50.
Freeman
,
J. A.
,
2012
, “
Optimization Under Uncertainty and Total Predictive Uncertainty for a Tractor-Trailer Base-Drag Reduction Device
,” Ph.D. dissertation, Virginia Polytechnic Institute and State University, Blacksburg, VA.
51.
He
,
J.
,
Watson
,
L. T.
, and
Sosonkina
,
M.
,
2009
, “
Algorithm 897: VTDIRECT95: Serial and Parallel Codes for the Global Optimization Algorithm DIRECT
,”
ACM Trans. Math. Software
,
36
(
3
), p.
17
.
You do not currently have access to this content.