This paper develops techniques for constructing metamodels that predict the range of an output variable given input–output data. We focus on models depending linearly on the parameters and arbitrarily on the input. This structure enables to rigorously characterize the range of the predicted output and the uncertainty in the model’s parameters. Strategies for calculating optimal interval predictor models (IPMs) that are insensitive to outliers are proposed. The models are optimal in the sense that they yield an interval valued function of minimal spread containing all (or, depending on the formulation, most) of the observations. Outliers are identified as the IPM is calculated by evaluating the extent by which their inclusion into the dataset degrades the tightness of the prediction. When the data generating mechanism (DGM) is stationary, the data are independent, and the optimization program (OP) used for calculating the IPM is convex (or when its solution coincides with the solution to an auxiliary convex program); the model’s reliability, which is the probability that a future observation would fall within the predicted range, is bounded tightly using scenario optimization theory. In contrast to most alternative techniques, this framework does not require making any assumptions on the underlying structure of the DGM.

References

References
1.
Sudret
,
B.
,
2012
, “
Metamodels for Structural Reliability and Uncertainty Quantification
,”
Fifth Asian-Pacific Symposium on Structural Reliability and Its Applications
, pp.
1
24
.
2.
Simpson
,
T.
,
Peplinski
,
J.
,
Koch
,
P.
, and
Allen
,
J.
,
2001
, “
Metamodels for Computer-Based Engineering Design: Survey and Recommendations
,”
Eng. Comput.
,
17
(
1
), pp.
129
150
.
3.
Santos
,
P. R.
, and
Santos
,
I. R.
,
2010
, “
Reinsch’s Smoothing Spline Simulation Metamodels
,”
2010 Winter Simulation Conference
, Baltimore, MD, Dec. 5–8, pp.
925
934
.
4.
Rasmussen
,
C. E.
, and
Williams
,
C. K.
,
2006
,
Gaussian Processes for Machine Learning
,
MIT Press
,
Cambridge, MA
.
5.
Seber
,
G. A.
, and
Wild
,
C. J.
,
2003
,
Nonlinear Regression
,
Wiley
,
Hoboken, NJ
.
6.
Kennedy
,
M.
, and
O’Hagan
,
A.
,
2001
, “
Bayesian Calibration of Computer Models
,”
J. R. Stat. Soc. B
,
63
(
3
), pp.
425
464
.
7.
Campi
,
M.
,
Calafiore
,
G.
, and
Garatti
,
S.
,
2009
, “
Interval Predictor Models: Identification and Reliability
,”
Automatica
,
45
(
2
), pp.
382
392
.
8.
Aubin
,
J. P.
, and
Cellina
,
A.
,
1984
,
Differential Inclusions
,
Springer-Verlag
,
Berlin
.
9.
Aubin
,
J. P.
,
Lygeros
,
J.
,
Quincampoix
,
M.
,
Sastry
,
S.
, and
Seube
,
N.
,
2002
, “
Impulse Differential Inclusions: A Viability Approach to Hybrid Systems
,”
IEEE Trans. Autom. Control
,
47
(
1
), pp.
2
20
.
10.
Milanese
,
M.
, and
Novara
,
C.
,
2004
, “
Set-Membership Identification of Nonlinear Systems
,”
Automatica
,
40
(
6
), pp.
957
975
.
11.
Milanese
,
M.
, and
Novara
,
C.
,
2005
, “
Set-Membership Prediction of Nonlinear Time Systems
,”
IEEE Trans. Autom. Control
,
50
(
11
), pp.
1655
1669
.
12.
Charnes
,
A.
,
Cooper
,
W. W.
, and
Symonds
,
G. H.
,
1958
, “
Cost Horizons and Certainty Equivalents: An Approach to Stochastic Programming of Heating Oil
,”
J. Inst. Oper. Res. Manage. Sci.
,
4
(
3
), pp.
235
263
.
13.
Calafiore
,
G.
, and
Campi
,
M. C.
,
2006
, “
The Scenario Approach to Robust Control Design
,”
IEEE Trans. Autom. Control
,
51
(
1
), pp.
742
753
.
14.
Campi
,
M. C.
, and
Garatti
,
S.
,
2008
, “
The Exact Feasibility of Randomized Solutions of Uncertain Convex Programs
,”
SIAM J. Optim.
,
19
(
3
), pp.
1211
1230
.
15.
Campi
,
M. C.
, and
Garatti
,
S.
,
2011
, “
A Sampling-and-Discarding Approach to Chance-Constrained Optimization: Feasibility and Optimality
,”
J. Optim. Theory Appl.
,
148
(
1
), pp.
257
280
.
16.
Alamo
,
T.
,
Luque
,
A.
,
Rodriguez
,
D.
, and
Tempo
,
R.
,
2012
, “
Randomized Control Design Through Probabilistic Validation
,”
American Control Conference
, Montreal, Canada, June 27–29, pp. 839–844.
17.
Crespo
,
L. G.
,
Kenny
,
S. P.
, and
Giesy
,
D. P.
,
2016
, “
Application of Interval Predictor Models to Space Radiation Shielding
,” AIAA Scitech 2016, pp.
1
35
.
18.
Crespo
,
L. G.
,
Kenny
,
S. P.
, and
Giesy
,
D. P.
,
2016
, “
A Comparison of Metamodeling Techniques Using Numerical Experiments
,” AIAA Scitech 2016, pp.
1
35
.
You do not currently have access to this content.