Two uncertainty quantification (UQ) techniques, latin-hypercube sampling (LHS) and polynomial chaos expansion (PCE), have been used in an initial UQ study to calculate the effect of boundary condition uncertainty on Large-eddy spray simulations. Liquid and vapor penetration as well as multidimensional liquid and vapor data were used as response variables. The Morris one-at-a-time (MOAT) screening method was used to identify the most important boundary conditions. The LHS and PCE methods both predict the same level of variability in the response variables, which was much larger than the corresponding experimental uncertainty. Nested grids were used in conjunction with the PCE method to examine the effects of subsets of boundary condition variables. Numerical modeling parameters had a much larger effect on the resulting spray predictions; the uncertainty in spray penetration or multidimensional spray contours from physically derived boundary conditions was close to the uncertainty of the measurements.

References

References
1.
Eckerle
,
W.
, and
Rutland
,
C.
,
2011
,
A Workshop to Identify Research Needs and Impacts in Predictive Simulation for Internal Combustion Engines (PreSICE)
, Arlington, VA, Mar. 3.
2.
Lacour
,
C.
, and
Pera
,
C.
,
2011
, “
An Experimental Database Dedicated to the Study and Modelling of Cyclic Variability in Spark-Ignition Engines With LES
,”
SAE
Technical Paper No. 2011-01-1282.
3.
Sick
,
V.
,
Reuss
,
D.
,
Abraham
,
P.
,
Alharbi
,
A.
,
Almagri
,
O.
,
Chen
,
H.
,
Rutland
,
C.
,
Zhang
,
Y.
,
Haworth
,
D.
,
Liu
,
K.
,
Oefelein
,
J.
,
Janicka
,
J.
,
Goryntsev
,
D.
,
Kuo
,
T.-W.
,
Yang
,
X.
, and
Gopalakrishnan
,
V.
,
2010
, “
A Common Engine Platform for Engine LES Development and Validation
,”
Les Rencontres Scientifiques d'IFP Energies nouvelles: International Conference on LES for Internal Combustion Engine Flows (LES4ICE)
,
C.
Angelberger
, ed.,
IFP Energies Nouvelle
,
Rueil-Malmaison, France
.
4.
Goryntsev
,
D.
,
Sadiki
,
A.
,
Klein
,
M.
, and
Janicka
,
J.
,
2009
, “
Large Eddy Simulation Based Analysis of the Effects of Cycle-to-Cycle Variations on Air–Fuel Mixing in Realistic DISI IC-Engines
,”
Proc. Combust. Inst.
,
32
(
2
), pp.
2759
2766
.
5.
Zhao
,
F.
,
Lai
,
M.-C.
, and
Harrington
,
D. L.
,
1999
, “
Automotive Spark-Ignited Direct-Injection Gasoline Engines
,”
Prog. Energy Combust. Sci.
,
25
(
5
), pp.
437
562
.
6.
Enaux
,
B.
,
Granet
,
V.
,
Vermorel
,
O.
,
Lacour
,
C.
,
Pera
,
C.
,
Angelberger
,
C.
, and
Poinsot
,
T.
,
2011
, “
LES Study of Cycle-to-Cycle Variations in a Spark Ignition Engine
,”
Proc. Combust. Inst.
,
33
(
2
), pp.
3115
3122
.
7.
Granet
,
V.
,
Vermorel
,
O.
,
Lacour
,
C.
,
Enaux
,
B.
,
Dugué
,
V.
, and
Poinsot
,
T.
,
2012
, “
Large-Eddy Simulation and Experimental Study of Cycle-to-Cycle Variations of Stable and Unstable Operating Points in a Spark Ignition Engine
,”
Combust. Flame
,
159
(
4
), pp.
1562
1575
.
8.
Goryntsev
,
D.
,
Sadiki
,
A.
, and
Janicka
,
J.
,
2013
, “
Analysis of Misfire Processes in Realistic Direct Injection Spark Ignition Engine Using Multi-Cycle Large Eddy Simulation
,”
Proc. Combust. Inst.
,
34
(
2
), pp.
2969
2976
.
9.
Banaeizadeh
,
A.
,
Afshari
,
A.
,
Schock
,
H.
, and
Jaberi
,
F.
,
2013
, “
Large-Eddy Simulations of Turbulent Flows in Internal Combustion Engines
,”
Int. J. Heat Mass Transfer
,
60
, pp.
781
796
.
10.
Fontanesi
,
S.
,
Paltrinieri
,
S.
, and
Cantore
,
G.
,
2014
, “
LES Analysis of Cyclic Variability in a GDI Engine
,”
SAE
Technical Paper No. 2014-01-1148.
11.
Pera
,
C.
,
Knop
,
V.
,
Chevillard
,
S.
, and
Reveillon
,
J.
,
2014
, “
Effects of Residual Burnt Gas Heterogeneity on Cyclic Variability in Lean-Burn SI Engines
,”
Flow, Turbul. Combust.
,
92
(
4
), pp.
837
863
.
12.
Pera
,
C.
,
Chevillard
,
S.
, and
Reveillon
,
J.
,
2013
, “
Effects of Residual Burnt Gas Heterogeneity on Early Flame Propagation and on Cyclic Variability in Spark-Ignited Engines
,”
Combust. Flame
,
160
(
6
), pp.
1020
1032
.
13.
Van Romunde
,
Z.
,
Aleiferis
,
P. G.
,
Cracknell
,
R. F.
, and
Walmsley
,
H. L.
,
2007
, “
Effect of Fuel Properties on Spray Development From a Multi-Hole DISI Engine Injector
,”
SAE
Technical Paper No. 2007-01-4032.
14.
Van Romunde
,
Z.
, and
Aleiferis
,
P. G.
,
2009
, “
Effect of Operating Conditions and Fuel Volatility on Development and Variability of Sprays From Gasoline Direct-Injection Multihole Injectors
,”
Atomization Sprays
,
19
(
3
), pp.
207
234
.
15.
Serras-Pereira
,
J.
,
Aleiferis
,
P. G.
,
Richardson
,
D.
, and
Wallace
,
S.
,
2007
, “
Mixture Preparation and Combustion Variability in a Spray-Guided DISI Engine
,”
SAE
Technical Paper No. 2007-01-4033.
16.
Serras-Pereira
,
J.
,
Aleiferis
,
P. G.
, and
Richardson
,
D.
,
2015
, “
An Experimental Database on the Effects of Single- and Split Injection Strategies on Spray Formation and Spark Discharge in an Optical Direct-Injection Spark-Ignition Engine Fuelled With Gasoline, Iso-Octane and Alcohols
,”
Int. J. Engine Res.
,
16
(
7
), pp.
851
896
.
17.
Blessinger
,
M.
,
Manin
,
J.
,
Skeen
,
S. A.
,
Meijer
,
M.
,
Parrish
,
S.
, and
Pickett
,
L. M.
,
2015
, “
Quantitative Mixing Measurements and Stochastic Variability of a Vaporizing Gasoline Direct-Injection Spray
,”
Int. J. Engine Res.
,
16
(
2
), pp.
238
252
.
18.
Rimmer
,
J. E. T.
,
Long
,
E. J.
,
Garner
,
C. P.
,
Hargrave
,
G. K.
,
Richardson
,
D.
, and
Wallace
,
S.
,
2009
, “
The Influence of Single and Multiple Injection Strategies on In-Cylinder Flow and Combustion Within a DISI Engine
,”
SAE
Technical Paper No. 2009-01-0660.
19.
Chen
,
H.
,
Hung
,
D. L. S.
,
Xu
,
M.
, and
Zhong
,
J.
,
2013
, “
Analyzing the Cycle-to-Cycle Variations of Pulsing Spray Characteristics by Means of the Proper Orthogonal Decomposition
,”
Atomization Sprays
,
23
(
7
), pp.
623
641
.
20.
Pope
,
S. B.
,
2000
,
Turbulent Flow
,
Cambridge University Press
,
New York
.
21.
Habchi
,
C.
, and
Bruneaux
,
G.
,
2012
, “
LES and Experimental Investigation of Diesel Sprays
,”
ICLASS
2012, 12th Triennial International Conference on Liquid Atomization and Spray Systems
,
ILASS International
,
Heidelberg, Germany
, Sept. 2–6, pp.
1
9
.
22.
Senecal
,
P. K.
,
Pomraning
,
E.
,
Richards
,
K. J.
, and
Som
,
S.
,
2013
, “
An Investigation of Grid Convergence for Spray Simulations Using an LES Turbulence Model
,”
SAE
Technical Paper No. 2013-01-1083.
23.
Senecal
,
P. K.
,
Pomraning
,
E.
,
Xue
,
Q.
,
Som
,
S.
,
Banerjee
,
S.
,
Hu
,
B.
,
Liu
,
K.
, and
Deur
,
J. M.
,
2014
, “
Large Eddy Simulation of Vaporizing Sprays Considering Multi-Injection Averaging and Grid-Convergent Mesh Resolution
,”
ASME J. Eng. Gas Turbines Power
,
136
(
11
), p.
111504
.
24.
Goryntsev
,
D.
,
Sadiki
,
A.
,
Klein
,
M.
, and
Janicka
,
J.
,
2010
, “
Analysis of Cyclic Variations of Liquid Fuel–Air Mixing Processes in a Realistic DISI IC-Engine Using Large Eddy Simulation
,”
Int. J. Heat Fluid Flow
,
31
(
5
), pp.
845
849
.
25.
Goryntsev
,
D.
,
Sadiki
,
A.
, and
Janicka
,
J.
,
2011
, “
Towards Large Eddy Simulation of Spray Combustion in Direct Injection Spark Ignition Engine
,”
SAE
Technical Paper No. 2011-01-1884.
26.
Parrish
,
S. E.
,
2014
, “
Evaluation of Liquid and Vapor Penetration of Sprays From a Multi-Hole Gasoline Fuel Injector Operating Under Engine-Like Conditions
,”
SAE Int. J. Engines
,
7
(
2
), pp.
1017
1033
.
27.
Parrish
,
S. E.
, and
Zink
,
R. J.
,
2012
, “
Development and Application of Imaging System to Evaluate Liquid and Vapor Envelopes of Multi-Hole Gasoline Fuel Injector Sprays Under Engine-Like Conditions
,”
Atomization Sprays
,
22
(
8
), pp.
647
661
.
28.
Amsden
,
A. A.
,
1999
, “
KIVA-3V, Release 2, Improvements to KIVA-3V
,” Los Alamos National Laboratory, Los Alamos, NM,
Report No. LA-13608-MS
.
29.
Lee
,
D.
,
Pomraning
,
E. D.
, and
Rutland
,
C. J.
,
2002
, “
LES Modeling of Diesel Engines
,”
SAE
Technical Paper No. 2002-01-2779.
30.
Bharadwaj
,
N.
,
Rutland
,
C. J.
, and
Chang
,
S.
,
2009
, “
Large Eddy Simulation Modelling of Spray-Induced Turbulence Effects
,”
Int. J. Engine Res.
,
10
(
2
), pp.
97
119
.
31.
Pomraning
,
E.
, and
Rutland
,
C. J.
,
2002
, “
Dynamic One-Equation Non-Viscosity Large-Eddy Simulation Model
,”
AIAA J.
,
40
(
4
), pp.
689
701
.
32.
Amsden
,
A. A.
,
O'Rourke
,
P. J.
, and
Butler
,
T. D.
,
1989
, “
KIVA-II: A Computer Program for Chemically Reactive Flows With Sprays
,” Los Alamos National Laboratory, Los Alamos, NM,
Report No. LA-11560-MS
.
33.
Beale
,
J. C.
, and
Reitz
,
R. D.
,
1999
, “
Modeling Spray Atomization With the Kelvin–Helmholtz/Rayleigh–Taylor Hybrid Model
,”
Atomization Sprays
,
9
(
6
), pp.
623
650
.
34.
Van Dam
,
N.
, and
Rutland
,
C.
,
2015
, “
Adapting Diesel Large-Eddy Simulation Spray Models for Direct-Injection Spark-Ignition Applications
,”
Int. J. Engine Res.
, (accepted).
35.
Adams
,
B. M.
,
Ebeida
,
M. S.
,
Eldred
,
M. S.
,
Jakeman
,
J. D.
,
Swiler
,
L. P.
,
Bohnhoff
,
W. J.
,
Dalbey
,
K. R.
,
Eddy
,
J. P.
,
Hu
,
K. T.
, and
Vigil
,
D. M.
,
2013
, “
DAKOTA, A Multilevel Parallel Object-Oriented Framework for Design Optimization, Parameter Estimation, Uncertainty Quantification, and Sensitivity Analysis: Version 5.4 User's Manual
,”
Sandia National Laboratories
,
Livermore, CA
, Report No. SAND2010-2183.
36.
Najm
,
H. N.
,
2009
, “
Uncertainty Quantification and Polynomial Chaos Techniques in Computational Fluid Dynamics
,”
Annu. Rev. Fluid Mech.
,
41
(
1
), pp.
35
52
.
37.
McKay
,
M. D.
,
Beckman
,
R. J.
, and
Conover
,
W. J.
,
1979
, “
Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output From a Computer Code
,”
Technometrics
,
21
(
2
), pp.
239
245
.
38.
Iman
,
R. L.
,
Helton
,
J. C.
, and
Campbell
,
J. E.
,
1981
, “
An Approach to Sensitivity Analysis of Computer Models: Part I—Introduction, Input Variable Selection and Preliminary Variable Assessment
,”
J. Qual. Technol.
,
13
(
3
), pp.
174
183
.
39.
Wiener
,
N.
,
1938
, “
The Homogeneous Chaos
,”
Am. J. Math.
,
60
(
4
), pp.
897
936
.
40.
Ghanem
,
R. G.
, and
Spanos
,
P. D.
,
1991
,
Stochastic Finite Elements: A Spectral Approach
,
Springer
,
New York.
41.
Xiu
,
D.
, and
Karniadakis
,
G. E.
,
2002
, “
The Wiener–Askey Polynomial Chaos for Stochastic Differential Equations
,”
SIAM J. Sci. Comput.
,
24
(
2
), pp.
619
644
.
42.
Smolyak
,
S. A.
,
1963
, “
Quadrature and Interpolation Formulae for Tensor Products of Certain Classes of Functions
,”
Dokl. Akad. nauk SSSR
,
148
(
5
), pp.
1042
1045
.
43.
Eldred
,
M. S.
,
Webster
,
C. G.
, and
Constantine
,
P. G.
,
2008
, “
Evaluation of Non-Intrusive Approaches for Wiener–Askey Generalized Polynomial Chaos
,”
AIAA
Paper No. 2008-1892.
44.
Eldred
,
M. S.
, and
Burkardt
,
J.
,
2009
, “
Comparison of Non-Intrusive Polynomial Chaos and Stochastic Collocation Methods for Uncertainty Quantification
,”
AIAA
Paper No. 2009-0976.
45.
Morris
,
M. D.
,
1991
, “
Factorial Sampling Plans for Preliminary Computational Experiments
,”
Technometrics
,
33
(
2
), pp.
161
174
.
46.
Parrish
,
S.
,
2014
, private communication.
47.
Reitz
,
R. D.
,
1987
, “
Modeling Atomization Processes in High-Pressure Vaporizing Sprays
,”
Atomisation Spray Technol.
,
3
, pp.
309
337
.
48.
Grover
,
R. O.
,
2005
, “
A Methodology for CFD Predictions of Spark-Ignition Direct-Injection Engine Conical Sprays Combining Improved Physical Submodels and System Optimization
,” Ph.D. thesis, The University of Michigan, Ann Arbor, MI.
49.
Pei
,
Y.
,
Shan
,
R.
,
Som
,
S.
,
Lu
,
T.
,
Longman
,
D.
, and
Davis
,
M. J.
,
2014
, “
Global Sensitivity Analysis of a Diesel Engine Simulation With Multi-Target Functions
,”
SAE
Technical Paper No. 2014-01-1117.
You do not currently have access to this content.