Model validation for computational fluid dynamics (CFD), where experimental data and model outputs are compared, is a key tool for assessing model uncertainty. In this work, mixed convection was studied experimentally for the purpose of providing validation data for CFD models with a high level of completeness. Experiments were performed in a facility built specifically for validation with a vertical, flat, heated wall. Data were acquired for both buoyancy-aided and buoyancy-opposed turbulent flows. Measured boundary conditions (BCs) include as-built geometry, inflow mean and fluctuating velocity profiles, and inflow and wall temperatures. Additionally, room air temperature, pressure, and relative humidity were measured to provide fluid properties. Measured system responses inside the flow domain include mean and fluctuating velocity profiles, temperature profiles, wall heat flux, and wall shear stress. All of these data are described in detail and provided in tabulated format.

References

References
1.
Oberkampf
,
W. L.
, and
Smith
,
B. L.
, 2014, “
Assessment Criteria for Computational Fluid Dynamics Validation Benchmark Experiments
,”
AIAA
Paper No. 2014-0205.
2.
Harris
,
J. R.
,
Lance
,
B. W.
, and
Smith
,
B. L.
,
2015
, “
Experimental Validation Data for CFD of Forced Convection on a Vertical Flat Plate
,”
ASME J. Fluids Eng.
,
138
(1), p.
011401
.
3.
Oberkampf
,
W. L.
, and
Roy
,
C. J.
,
2010
,
Verification and Validation in Scientific Computing
,
Cambridge University Press
, New York.
4.
ASME
,
2009
,
ASME V&V 20-2009: Standard for Verification and Validation in Computational Fluid Dynamics and Heat Transfer
,
American Society of Mechanical Engineers
, New York.
5.
Roache
,
P. J.
,
2009
,
Fundamentals of Verification and Validation
,
Hermosa Publication
, Socorro, NM.
6.
AIAA
,
1998
, “
Guide for the Verification and Validation of Computational Fluid Dynamics Simulations
,”
AIAA
Paper No. G-077-1998.
7.
Kays
,
W. M.
,
Crawford
,
M. E.
, and
Weigand
,
B.
,
2012
,
Convective Heat and Mass Transfer
,
McGraw-Hill
,
Boston, MA
.
8.
Incropera
,
F. P.
,
Dewitt
,
D. P.
,
Bergman
,
T. L.
, and
Lavine
,
A. S.
,
2007
,
Fundamentals of Heat and Mass Transfer
,
6th ed.
,
Wiley
, Hoboken, NJ.
9.
Jackson
,
J. D.
,
Cotton
,
M. A.
, and
Axcell
,
B. P.
,
1989
, “
Studies of Mixed Convection in Vertical Tubes
,”
Int. J. Heat Fluid Flow
,
10
(
1
), pp.
2
15
.
10.
Chen
,
T. S.
,
Armaly
,
B. F.
, and
Ramachandran
,
N.
,
1986
, “
Correlations for Laminar Mixed Convection Flows on Vertical, Inclined, and Horizontal Flat Plates
,”
ASME J. Heat Transfer
,
108
(
4
), p.
835
.
11.
Ramachandran
,
N.
,
Armaly
,
B. F.
, and
Chen
,
T. S.
,
1985
, “
Measurements and Predictions of Laminar Mixed Convection Flow Adjacent to a Vertical Surface
,”
ASME J. Heat Transfer
,
107
(
3
), p.
636
.
12.
Kim
,
W. S.
,
Jackson
,
J. D.
,
He
,
S.
, and
Li
,
J.
,
2004
, “
Performance of a Variety of Low Reynolds Number Turbulence Models Applied to Mixed Convection Heat Transfer to Air Flowing Upwards in a Vertical Tube
,”
Proc. Inst. Mech. Eng., Part C
,
218
(
11
), pp.
1361
1372
.
13.
Wang
,
J.
,
Li
,
J.
, and
Jackson
,
J.
,
2004
, “
A Study of the Influence of Buoyancy on Turbulent Flow in a Vertical Plane Passage
,”
Int. J. Heat Fluid Flow
,
25
(
3
), pp.
420
430
.
14.
Kähler
,
C. J.
,
Sammler
,
B.
, and
Kompenhans
,
J.
,
2002
, “
Generation and Control of Tracer Particles for Optical Flow Investigations in Air
,”
Experiments in Fluids
,
33
(
6
), pp.
736
742
.
15.
Touloukian
,
Y. S.
, and
Ho
,
C. Y.
,
1977
,
Thermophysical Properties of Selected Aerospace Materials Part II: Thermophysical Properties of Seven Materials
,
Purdue University
,
West Lafayette, IN
.
16.
Warner
,
S. O.
, and
Smith
,
B. L.
,
2014
, “
Autocorrelation-Based Estimate of Particle Image Density for Diffraction Limited Particle Images
,”
Meas. Sci. Technol.
,
25
(
6
), p.
065201
.
17.
Blackwell
,
B. F.
,
Kays
,
W. M.
, and
Moffat
,
R. J.
,
1972
, “
The Turbulent Boundary Layer on a Porous Plate: An Experimental Study on the Heat Transfer Behavior With Adverse Pressure Gradients
,” Stanford University, Stanford, CA, Technical Report No. HMT-16.
18.
Coleman
,
H. W.
, and
Steele
,
W. G.
,
2009
,
Experimentation, Validation, and Uncertainty Analysis for Engineers
,
Wiley
,
Hoboken, NJ
.
19.
Timmins
,
B. H.
,
Wilson
,
B. W.
,
Smith
,
B. L.
, and
Vlachos
,
P. P.
,
2012
, “
A Method for Automatic Estimation of Instantaneous Local Uncertainty in Particle Image Velocimetry Measurements
,”
Exp. Fluids
,
53
(
4
), pp.
1133
1147
.
20.
Wilson
,
B. M.
, and
Smith
,
B. L.
,
2013
, “
Taylor-Series and Monte-Carlo-Method Uncertainty Estimation of the Width of a Probability Distribution Based on Varying Bias and Random Error
,”
Meas. Sci. Technol.
,
24
(
3
), p.
035301
.
21.
Kendall
,
A.
, and
Koochesfahani
,
M.
,
2007
, “
A Method for Estimating Wall Friction in Turbulent Wall-Bounded Flows
,”
Exp. Fluids
,
44
(
5
), pp.
773
780
.
22.
Bevington
,
P. R.
, and
Robinson
,
D. K.
,
2003
,
Data Reduction and Error Analysis
, McGraw–Hill,
New York
.
You do not currently have access to this content.