This work is concerned with the use of similarity solutions of the compressible flow equations as benchmarks or verification test problems for finite-volume compressible flow simulation software. In practice, this effort can be complicated by the infinite spatial/temporal extent of many candidate solutions or “test problems.” Methods can be devised with the intention of ameliorating this inconsistency with the finite nature of computational simulation; the exact strategy will depend on the code and problem archetypes under investigation. For example, self-similar shock wave propagation can be represented in Lagrangian compressible flow simulations as rigid boundary-driven flow, even if no such “piston” is present in the counterpart mathematical similarity solution. The purpose of this work is to investigate in detail the methodology of representing self-similar shock wave propagation as a piston-driven flow in the context of various test problems featuring simple closed-form solutions of infinite spatial/temporal extent. The closed-form solutions allow for the derivation of similarly closed-form piston boundary conditions (BCs) for use in Lagrangian compressible flow solvers. The consequences of utilizing these BCs (as opposed to directly initializing the self-similar solution in a computational spatial grid) are investigated in terms of common code verification analysis metrics (e.g., shock strength/position errors and global convergence rates).

References

References
1.
Sedov
,
L.
,
1959
,
Similarity and Dimensional Methods in Mechanics
,
Academic Press
,
New York
.
2.
Barenblatt
,
G.
,
1996
,
Scaling, Self-Similarity, and Intermediate Asymptotics: Dimensional Analysis and Intermediate Asymptotics
,
Cambridge University Press
,
Cambridge, UK
.
3.
Axford
,
R.
,
2000
, “
Solutions of the Noh Problem for Various Equations of State Using Lie Groups
,”
Laser Part. Beams
,
18
(
1
), pp.
93
100
.
4.
Zel'dovich
,
Y.
, and
Raizer
,
Y.
,
2002
,
Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena
,
Dover Publications
,
Mineola, New York
.
5.
Ramsey
,
S.
,
Kamm
,
J.
, and
Bolstad
,
J.
,
2012
, “
The Guderley Problem Revisited
,”
Int. J. Comput. Fluid Dyn.
,
26
(
2
), pp.
79
99
.
6.
Coggeshall
,
S.
,
1991
, “
Analytic Solutions of Hydrodynamics Equations
,”
Phys. Fluids A
,
3
(
5
), pp.
757
769
.
7.
Oberkampf
,
W.
,
Trucano
,
T.
, and
Hirsh
,
C.
,
2004
, “
Verification, Validation, and Predictive Capability in Computational Engineering and Physics
,”
ASME Appl. Mech. Rev.
,
57
(
5
), pp.
345
384
.
8.
Roy
,
C.
,
2005
, “
Review of Code and Solution Verification Procedures for Computational Simulation
,”
J. Comput. Phys.
,
205
(
1
), pp.
131
156
.
9.
Zel'dovich
,
Y.
,
1956
, “
Motion of a Gas Under the Action of an Impulsive Pressure (Load)
,”
Akust. Zh.
,
2
, pp.
28
38
.
10.
Noh
,
W.
,
1987
, “
Errors for Calculations of Strong Shocks Using an Artificial Viscosity and an Artificial Heat Flux
,”
J. Comput. Phys.
,
72
(
1
), pp.
78
120
.
11.
Rider
,
W.
,
2000
, “
Revisiting Wall Heating
,”
J. Comput. Phys.
,
162
(
2
), pp.
395
410
.
12.
Gehmyer
,
M.
,
Cheng
,
B.
, and
Mihalas
,
D.
,
1997
, “
Noh's Constant-Velocity Shock Problem Revisited
,”
Shock Waves
,
7
(
5
), pp.
255
274
.
13.
Landau
,
L.
, and
Lifshitz
,
E.
,
1987
,
Fluid Mechanics
,
2nd ed.
,
Pergamon Press
,
Oxford, UK
.
14.
Sachdev
,
P.
,
2004
,
Shock Waves and Explosions
,
Chapman & Hall/CRC
,
Boca Raton, FL
.
15.
Lazarus
,
R.
,
1981
, “
Self-Similar Solutions for Converging Shocks and Collapsing Cavities
,”
SIAM J. Numer. Anal.
,
18
(
2
), pp.
316
371
.
16.
Burton
,
D.
,
1990
, “
Conservation of Energy, Momentum, and Angular Momentum in Lagrangian Staggered-Grid Hydrodynamics
,” Lawrence Livermore National Laboratory, Livermore, CA, Technical Report No. UCRL-JC-195926.
17.
Caramana
,
E.
,
Burton
,
D.
,
Shashkov
,
M.
, and
Whalen
,
P.
,
1998
, “
The Construction of Compatible Hydrodynamics Algorithms Utilizing Conservation of Total Energy
,”
J. Comput. Phys.
,
146
(1), pp.
227
262
.
18.
Caramana
,
E.
,
Shashkov
,
M.
, and
Whalen
,
P.
,
1998
, “
Formulations of Artificial Viscosity for Multi-Dimensional Shock Wave Computations
,”
J. Comput. Phys.
,
144
(
1
), pp.
70
97
.
19.
Morgan
,
N.
,
2013
, “
A Dissipation Model for Staggered Grid Lagrangian Hydrodynamics
,”
Comput. Fluids
,
83
, pp.
48
57
.
20.
Morgan
,
N.
,
Lipnikov
,
K.
,
Burton
,
D.
, and
Kenamond
,
M.
,
2014
, “
A Lagrangian Staggered Grid Godunov-Like Approach for Hydrodynamics
,”
J. Comput. Phys.
,
259
, pp.
568
597
.
21.
Banks
,
J.
,
Aslam
,
T.
, and
Rider
,
W.
,
2008
, “
On Sub-Linear Convergence for Linearly Degenerate Waves in Capturing Schemes
,”
J. Comput. Phys.
,
227
(
14
), pp.
6985
7002
.
22.
Majda
,
A.
, and
Ralston
,
J.
,
1979
, “
Discrete Shock Profiles for Systems of Conservation Laws
,”
Comm. Pure Appl. Math.
,
32
(
4
), pp.
445
482
.
23.
LeVeque
,
R.
,
2002
,
Finite Volume Methods for Hyperbolic Problems
,
Cambridge University Press
,
Cambridge, UK
.
24.
Arora
,
M.
, and
Roe
,
P.
,
1997
, “
On Postshock Oscillations Due to Shock Capturing Schemes in Unsteady Flows
,”
J. Comput. Phys.
,
130
(
1
), pp.
25
40
.
25.
Kamm
,
J.
,
Rider
,
W.
, and
Brock
,
J.
,
2003
, “
Combined Space and Time Convergence Analysis of a Compressible Flow Algorithm
,”
AIAA
Paper No. 2003-4241.
26.
Taylor
,
G.
,
1950
, “
The Formation of a Blast Wave by a Very Intense Explosion. I. Theoretical Discussion
,”
Proc. R. Soc. London, Ser. A
,
201
(
1065
), pp.
159
174
.
27.
Korobeĭnikov
,
V.
,
1991
,
Problems of Point Blast Theory
,
Springer
,
New York
.
28.
Guderley
,
G.
,
1942
, “
Starke kugelige und zylindrische Verdichtungsstöβe in der Nähe des Kugelmittelpunktes bzw. der Zylinderachse
,”
Luftfahrtforschung
,
19
, pp.
302
312
.
29.
Doebling
,
S.
, and
Ramsey
,
S.
,
2013
, “
Impact of Artificial Viscosity Models on Verification Assessment of a Lagrangian Hydrodynamics Code Using the Sedov Problem
,” Los Alamos National Laboratory, Los Alamos, NM, Technical Report No. LA-UR-13-23559.
30.
Hornung
,
H.
,
Pullin
,
D.
, and
Ponchaut
,
N.
,
2008
, “
On the Question of Universality of Imploding Shock Waves
,”
Acta Mech.
,
201
(
1–4
), pp.
31
35
.
You do not currently have access to this content.