Data-driven random process models have become increasingly important for uncertainty quantification (UQ) in science and engineering applications, due to their merit of capturing both the marginal distributions and the correlations of high-dimensional responses. However, the choice of a random process model is neither unique nor straightforward. To quantitatively validate the accuracy of random process UQ models, new metrics are needed to measure their capability in capturing the statistical information of high-dimensional data collected from simulations or experimental tests. In this work, two goodness-of-fit (GOF) metrics, namely, a statistical moment-based metric (SMM) and an M-margin U-pooling metric (MUPM), are proposed for comparing different stochastic models, taking into account their capabilities of capturing the marginal distributions and the correlations in spatial/temporal domains. This work demonstrates the effectiveness of the two proposed metrics by comparing the accuracies of four random process models (Gaussian process (GP), Gaussian copula, Hermite polynomial chaos expansion (PCE), and Karhunen–Loeve (K–L) expansion) in multiple numerical examples and an engineering example of stochastic analysis of microstructural materials properties. In addition to the new metrics, this paper provides insights into the pros and cons of various data-driven random process models in UQ.

References

References
1.
Xiong
,
F.
,
Yin
,
X.
,
Chen
,
W.
, and
Yang
,
S.
,
2010
, “
Enhanced Probabilistic Analytical Target Cascading With Application to Multi-Scale Design
,”
Eng. Optim.
,
42
(
6
), pp.
581
592
.
2.
Tamura
,
Y.
,
Suganuma
,
S.
,
Kikuchi
,
H.
, and
Hibi
,
K.
,
1999
, “
Proper Orthogonal Decomposition of Random Wind Pressure Field
,”
J. Fluids Struct.
,
13
(
7–8
), pp.
1069
1095
.
3.
Yin
,
X. L.
,
Lee
,
S.
,
Chen
,
W.
,
Liu
,
W. K.
, and
Horstemeyer
,
M. F.
,
2009
, “
Efficient Random Field Uncertainty Propagation in Design Using Multiscale Analysis
,”
ASME J. Mech. Des.
,
131
(
2
), p.
021006
.
4.
Missoum
,
S.
,
2008
, “
Probabilistic Optimal Design in the Presence of Random Fields
,”
Struct. Multidiscip. Optim.
,
35
(
6
), pp.
523
530
.
5.
Xi
,
Z. M.
,
Youn
,
B. D.
, and
Hu
,
C.
,
2010
, “
Effective Random Field Characterization Considering Statistical Dependence for Probability Analysis and Design
,”
ASME
Paper No. DETC2010-29183.
6.
Greene
,
M. S.
,
Xu
,
H.
,
Tang
,
S.
,
Chen
,
W.
, and
Liu
,
W. K.
,
2013
, “
A Generalized Uncertainty Propagation Criterion From Benchmark Studies of Microstructured Material Systems
,”
Comput. Methods Appl. Mech. Eng.
,
254
, pp.
271
291
.
7.
Xu
,
H. Y.
,
Greene
,
M. S.
,
Deng
,
H.
,
Dikin
,
D.
,
Brinson
,
C.
,
Liu
,
W. K.
,
Burkhart
,
C.
,
Papakonstantopoulos
,
G.
,
Poldneff
,
M.
, and
Chen
,
W.
,
2013
, “
Stochastic Reassembly Strategy for Managing Information Complexity in Heterogeneous Materials Analysis and Design
,”
ASME J. Mech. Des.
,
135
(
10
), p.
101010
.
8.
Guilleminot
,
J.
, and
Soize
,
C.
,
2011
, “
Non
Gaussian Positive
Definite Matrix
Valued Random Fields With Constrained Eigenvalues: Application to Random Elasticity Tensors With Uncertain Material Symmetries
,”
Int. J. Numer. Methods Eng.
,
88
(
11
), pp.
1128
1151
.
9.
Greene
,
M. S.
,
Liu
,
Y.
,
Chen
,
W.
, and
Liu
,
W. K.
,
2011
, “
Computational Uncertainty Analysis in Multiresolution Materials Via Stochastic Constitutive Theory
,”
Comput. Methods Appl. Mech. Eng.
,
200
(
1–4
), pp.
309
325
.
10.
Allaix
,
D. L.
, and
Carbone
,
V. I.
,
2013
, “
Karhunen–Loève Decomposition of Random Fields Based on a Hierarchical Matrix Approach
,”
Int. J. Numer. Methods Eng.
,
94
(
11
), pp.
1015
1036
.
11.
Allen
,
M.
,
Raulli
,
M.
,
Maute
,
K.
, and
Frangopol
,
D. M.
,
2004
, “
Reliability-Based Analysis and Design Optimization of Electrostatically Actuated MEMS
,”
Comput. Struct.
,
82
(
13–14
), pp.
1007
1020
.
12.
Ditlevsen
,
O.
,
1988
, “
Stochastic Model of Self-Weight Load
,”
J. Struct. Eng.
,
114
(
1
), pp.
222
230
.
13.
Nayak
,
P. R.
,
1971
, “
Random Process Model of Rough Surfaces
,”
ASME J. Tribol.
,
93
(
3
), pp.
398
407
.
14.
Noh
,
Y.
,
Choi
,
K. K.
, and
Du
,
L.
,
2009
, “
Reliability-Based Design Optimization of Problems With Correlated Input Variables Using a Gaussian Copula
,”
Struct. Multidiscip. Optim.
,
38
(
1
), pp.
1
16
.
15.
Xi
,
Z.
, and
Wang
,
P.
,
2012
, “
A Copula Based Sampling Method for Residual Life Prediction of Engineering Systems Under Uncertainty
,”
ASME
Paper No. DETC2012-71105.
16.
Zavala
,
V. M.
,
Constantinescu
,
E. M.
,
Krause
,
T.
, and
Anitescu
,
M.
,
2009
, “
On-Line Economic Optimization of Energy Systems Using Weather Forecast Information
,”
J. Process Control
,
19
(
10
), pp.
1725
1736
.
17.
Wiener
,
N.
,
1938
, “
The Homogeneous Chaos
,”
Am. J. Math.
,
60
(
4
), pp.
897
936
.
18.
Acharjee
,
S.
, and
Zabaras
,
N.
,
2007
, “
A Non-Intrusive Stochastic Galerkin Approach for Modeling Uncertainty Propagation in Deformation Processes
,”
Comput. Struct.
,
85
(
5–6
), pp.
244
254
.
19.
Xiu
,
D. B.
, and
Karniadakis
,
G. E.
,
2003
, “
Modeling Uncertainty in Flow Simulations Via Generalized Polynomial Chaos
,”
J. Comput. Phys.
,
187
(
1
), pp.
137
167
.
20.
Holmes
,
P.
,
Lumley
,
J. L.
, and
Berkooz
,
G.
,
1998
,
Turbulence, Coherent Structures, Dynamical Systems and Symmetry
,
Cambridge University Press
, New York.
21.
Feeny
,
B. F.
, and
Kappagantu
,
R.
,
1998
, “
On the Physical Interpretation of Proper Orthogonal Modes in Vibrations
,”
J. Sound Vib.
,
211
(
4
), pp.
607
616
.
22.
Xi
,
Z. M.
,
Jung
,
B. C.
, and
Youn
,
B. D.
,
2012
, “
Random Field Modeling With Insufficient Data Sets for Probability Analysis
,”
Annual Reliability and Maintainability Symposium
(
RAMS
), Reno, NV, Jan. 23–26.
23.
Craig
,
K.
, and
Roux
,
W.
,
2008
, “
On the Investigation of Shell Buckling Due to Random Geometrical Imperfections Implemented Using Karhunen–Loève Expansions
,”
Int. J. Numer. Methods Eng.
,
73
(
12
), pp.
1715
1726
.
24.
Peacock
,
J. A.
,
1983
, “
Two-Dimensional Goodness-of-Fit Testing in Astronomy
,”
Mon. Not. R. Astron. Soc.
,
202
(
3
), pp.
615
627
.
25.
Fasano
,
G.
, and
Franceschini
,
A.
,
1987
, “
A Multidimensional Version of the Kolmogorov–Smirnov Test
,”
Mon. Not. R. Astron. Soc.
,
225
(
1
), pp.
155
170
.
26.
Pollard
,
D.
,
1979
, “
General Chi-Square Goodness-of-Fit Tests With Data-Dependent Cells
,”
Z. Wahrscheinlichkeitstheorie Verw. Geb.
,
50
(
3
), pp.
317
331
.
27.
Dobric
,
J.
, and
Schmid
,
F.
,
2005
, “
Testing Goodness of Fit for Parametric Families of Copulas—Application to Financial Data
,”
Commun. Stat.-Simul. Comput.
,
34
(
4
), pp.
1053
1068
.
28.
Fermanian
,
J. D.
,
2005
, “
Goodness-of-Fit Tests for Copulas
,”
J. Multivar. Anal.
,
95
(
1
), pp.
119
152
.
29.
Huard
,
D.
,
Evin
,
G.
, and
Favre
,
A. C.
,
2006
, “
Bayesian Copula Selection
,”
Comput. Stat. Data Anal.
,
51
(
2
), pp.
809
822
.
30.
Silva
,
R. D.
, and
Lopes
,
H. F.
,
2008
, “
Copula, Marginal Distributions and Model Selection: A Bayesian Note
,”
Stat. Comput.
,
18
(
3
), pp.
313
320
.
31.
Ferson
,
S.
, and
Oberkampf
,
W. L.
,
2009
, “
Validation of Imprecise Probability Models
,”
Int. J. Reliab. Saf.
,
3
, pp.
3
22
.
32.
Li
,
W.
,
Chen
,
W.
,
Jiang
,
Z.
,
Lu
,
Z.
, and
Liu
,
Y.
,
2014
, “
New Validation Metrics for Models With Multiple Correlated Responses
,”
Reliab. Eng. Syst. Saf.
,
127
, pp.
1
11
.
33.
Bishop
,
C. M.
,
2006
,
Pattern Recognition and Machine Learning
, Vol.
4
,
Springer
,
New York
.
34.
Arbenz
,
P.
,
2013
, “
Bayesian Copulae Distributions, With Application to Operational Risk Management—Some Comments
,”
Methodol. Comput. Appl. Probab.
,
15
(
1
), pp.
105
108
.
35.
Xiu
,
D.
,
2010
,
Numerical Methods for Stochastic Computations: A Spectral Method Approach
,
Princeton University Press
, New York.
36.
Sakamoto
,
S.
, and
Ghanem
,
R.
,
2002
, “
Polynomial Chaos Decomposition for the Simulation of Non-Gaussian Nonstationary Stochastic Processes
,”
J. Eng. Mech.
,
128
(
2
), pp.
190
201
.
37.
Stark
,
H.
, and
Woods
,
J. W.
,
1986
,
Probability, Random Processes, and Estimation Theory for Engineers
, Vol.
1
,
Prentice Hall
,
Englewood Cliffs, NJ
.
38.
Ghanem
,
R. G.
, and
Spanos
,
P. D.
,
2003
,
Stochastic Finite Elements: A Spectral Approach
,
Courier Corporation
, New York.
39.
Huang
,
S.
,
Quek
,
S.
, and
Phoon
,
K.
,
2001
, “
Convergence Study of the Truncated Karhunen–Loeve Expansion for Simulation of Stochastic Processes
,”
Int. J. Numer. Methods Eng.
,
52
(
9
), pp.
1029
1043
.
40.
Wang
,
S.
,
1998
, “
Aggregation of Correlated Risk Portfolios: Models and Algorithms
,” Casualty Actuarial Society.
41.
Liu
,
Y.
,
Greene
,
M. S.
,
Chen
,
W.
,
Dikin
,
D. A.
, and
Liu
,
W. K.
,
2013
, “
Computational Microstructure Characterization and Reconstruction for Stochastic Multiscale Material Design
,”
Comput.-Aided Des.
,
45
(
1
), pp.
65
76
.
42.
Xu
,
H.
,
Dikin
,
D.
,
Burkhart
,
C.
, and
Chen
,
W.
,
2014
, “
Descriptor-Based Methodology for Statistical Characterization and 3D Reconstruction for Polymer Nanocomposites
,”
Comput. Mater. Sci.
,
85
, pp.
206
216
.
43.
Hill
,
R.
,
1963
, “
Elastic Properties of Reinforced Solids—Some Theoretical Principles
,”
J. Mech. Phys. Solids
,
11
(
5
), pp.
357
372
.
44.
Xu
,
H.
,
Li
,
Y.
,
Brinson
,
C.
, and
Chen
,
W.
,
2014
, “
A Descriptor-Based Design Methodology for Developing Heterogeneous Microstructural Materials System
,”
ASME J. Mech. Des.
,
136
(
5
), p.
051007
.
You do not currently have access to this content.