Societal concerns about the widespread use of flaring of waste gases have motivated methods for predicting combustion efficiency from industrial flare systems under high crosswind conditions. The objective of this paper is to demonstrate, with a quantified degree of accuracy, a prediction procedure for the combustion efficiency of industrial flares in crosswind by using large eddy simulations (LES). LES is shown to resolve the important mixing between fuel and entrained air governing the extent of reaction to within less than a percent of combustion efficiency. The experimental data from the 4-in. flare tests performed at the CanmetENERGY wind tunnel flare facility were used as experimentally measured metrics to validate the simulation with quantified uncertainty. The approach used prior information about the models and experimental data and the associated likelihood functions to determine informative posterior distributions. The model values were subjected to a consistency constraint, which requires that all experiments and simulations be bounded by their individual experimental uncertainty. The final result was a predictive capability (in the nearby regime) for flare combustion efficiency where no/sparse experimental data are available, but the validation process produces error bars for the predicted combustion efficiency.

References

References
1.
Johnson
,
M. R.
, and
Kostiuk
,
L. W.
,
2000
, “
Efficiencies of Low-Momentum Jet Diffusion Flames in Crosswinds
,”
Combust. Flame
,
123
(
1–2
), pp.
189
200
.
2.
Bourguignon
,
E.
,
Johnson
,
M. R.
, and
Kostiuk
,
L. W.
,
1999
, “
The Use of a Closed-Loop Wind Tunnel for Measuring the Combustion Efficiency of Flames in a Cross Flow
,”
Combust. Flame
,
119
(
3
), pp.
319
334
.
3.
Johnson
,
M. R.
, and
Kostiuk
,
L. W.
,
2002
, “
A Parametric Model for the Efficiency of a Flare in Crosswind
,”
Proc. Combust. Inst.
,
29
(
2
), pp.
1943
1950
.
4.
Majeski
,
A. J.
,
Wilson
,
D. J.
, and
Kostiuk
,
L. W.
,
2003
, “Predicting the Length of Low Momentum Jet Diffusion Flares in Crossflow,”
Combust. Sci. Tech.
,
176
(
12
), pp.
2001
2025
.
5.
Leahey
,
D. M.
, and
Preston
,
K.
,
2001
, “
Theoretical and Observational Assessments of Flare Efficiencies
,”
J. Air Waste Manage. Assoc.
,
51
(
12
), pp.
1610
1616
.
6.
Blackwood
,
T. R.
,
2000
, “
An Evaluation of Flare Combustion Efficiency Using Open-Path Fourier Transform Infrared Technology
,”
J. Air Waste Manage. Assoc.
,
50
(
10
), pp.
1714
1722
.
7.
Strosher
,
M. T.
,
2000
, “
Characterization of Emissions From Diffusion Flare Systems
,”
J. Air Waste Manage. Assoc.
,
50
(
10
), pp.
1723
1733
.
8.
Leahey
,
D. M.
,
Schroeder
,
M. B.
, and
Hansen
,
M. C.
,
1996
, “
A Theoretical Assessment of Flare Efficiencies as a Function of Gas Exit Velocity and Wind Speed
,”
Flaring Technology Symposium
, Edmonton, AB, Canada, Feb. 21.
9.
Pohl
,
J. H.
,
Lee
,
J.
, and
Payne
,
R.
,
1986
, “
Combustion Efficiency of Flares
,”
Combust. Sci. Technol.
,
50
(4–6), pp.
217
231
.
10.
Lawal
,
M. S.
,
Fairweather
,
M.
,
Gogolek
,
P.
,
Gubba
,
S. R.
,
Ingham
,
D. B.
,
Ma
,
L.
,
Pourkashanian
,
M.
, and
Williams
,
A.
,
2013
, “
CFD Predictions of Wake-Stabilized Jet Flames in a Cross-Flow
,”
Energy
,
53
, pp.
259
269
.
11.
Lawal
,
M. S.
,
Fairweather
,
M.
,
Gogolek
,
P.
,
Gubba
,
S. R.
,
Ingham
,
D. B.
,
Ma
,
L.
,
Pourkashanian
,
M.
, and
Williams
,
A.
,
2013
, “
Large Eddy Simulation of Wake-Stabilized Flares
,”
Fuel Process. Technol.
,
112
, pp.
35
47
.
12.
Bayarri
,
M. J.
,
Berger
,
J. O.
,
Paulo
,
R.
, and
Sacks
,
J.
,
2007
, “
A Framework for Validation of Computer Models
,”
Technometrics
,
49
(
2
), pp.
138
154
.
13.
Bayarri
,
M. J.
,
Berger
,
J. O.
,
Higdon
,
D.
,
Kennedy
,
M. C.
,
Kottas
,
A.
,
Paulo
,
R.
,
Sacks
,
J.
,
Cafeo
,
J. A.
,
Cavendish
,
J. C.
,
Lin
,
C. H.
, and
Tui
,
J.
,
2002
, “
A Framework for Validation of Computer Models
,” National Institute of Statistical Sciences, Research Triangle Park, NC, NISS Technical Report No. 128.
14.
Feeley
,
R.
,
Seiler
,
P.
,
Packard
,
A.
, and
Frenklach
,
M.
,
2004
, “
Consistency of a Reaction Dataset
,”
J. Phys. Chem. A
,
108
(
44
), pp.
9573
9583
.
15.
Russi
,
T.
,
Packard
,
A.
, and
Frenklach
,
M.
,
2010
, “
Uncertainty Quantification: Making Predictions of Complex Reaction Systems Reliable
,”
Chem. Phys. Lett.
,
499
(
1–3
), pp.
1
8
.
16.
Rhie
,
C. M.
, and
Chow
,
W. L.
,
1983
, “
A Numerical Study of the Turbulent Flow Past an Isolated Airfoil With Trailing Edge Separation
,”
AIAA J.
,
21
(
11
), pp.
1525
1532
.
17.
Nicoud
,
F.
, and
Ducros
,
F.
,
1999
, “
Subgrid-Scale Stress Modelling Based on the Square of the Velocity Gradient Tensor
,”
Flow, Turbul. Combust.
,
62
(
3
), pp.
183
200
.
18.
Hinze
,
J. O.
,
1975
,
Turbulence
,
McGraw-Hill Publishing
,
New York
.
19.
Cd-Adapco
,
2011
,
User Guide STAR-CCM+v5.06.010
,
Cd-Adapco
,
Melville, NY
.
20.
Lehtiniemi
,
H.
,
Mauss
,
F.
,
Balthasar
,
M.
, and
Magnusson
,
I.
,
2006
, “
Modeling Diesel Spray Ignition Using Detailed Chemistry With a Progress Variable Approach
,”
Combust. Sci. Technol.
,
178
(
10–11
), pp.
1977
1997
.
21.
Karin
,
F.
,
Perlman
,
C.
,
Tunér
,
A.
, and
Mauss
,
F.
,
2011
, “
1D Engine Modeling With Detailed Reaction Kinetics
,” Swedish-Finnish Flames Days, Piteå, Sweden, Jan. 26–27, pp.
26
27
.
22.
Qin
,
H.
,
Lissianski
,
V. V.
,
Yang
,
H.
,
Gardiner
,
W. C.
,
Davis
,
S. G.
, and
Wang
,
H.
,
2000
, “
Combustion Chemistry of Propane: A Case Study of Detailed Reaction Mechanism Optimization
,”
Proc. Combust. Inst.
,
28
(
2
), pp.
1663
1669
.
23.
Gogolek
,
P. E. G.
, and
Hayden
,
A. C. S.
,
2004
, “
Performance of Flare Flames in a Crosswind With Nitrogen Dilution
,”
J. Can. Pet. Technol.
,
43
(
8
), pp.
43
47
.
24.
Jatale
,
A.
,
Smith
,
P.
,
Smith
,
S.
,
Thornock
,
J.
,
Spinti
,
J.
, and
Hradisky
,
M.
,
2015
, “
Application of a Verification, Validation and Uncertainty Quantification Framework to a Turbulent Buoyant Helium Plume
,”
Flow, Turbul. Combust.
,
95
(
1
), pp.
143
168
.
25.
Desam
,
P. R.
,
Smith
,
P. J.
,
Borodai
,
S. G.
, and
Kumar
,
S.
,
2004
, “
Computing Flare Dynamics Using Large Eddy Simulations
,” American Flame Research Committee (
AFRC
) 2004, Maui, Hawaii, Jan 1–4.
26.
Xin
,
Y.
, and
Gore
,
J. P.
,
2005
, “
Two-Dimensional Soot Distributions in Buoyant Turbulent Fires
,”
Proc. Combust. Inst.
,
30
(
1
), pp.
719
726
.
27.
Yimer
,
I.
,
Campbell
,
I.
, and
Jiang
,
L.-Y.
,
2002
, “
Estimation of the Turbulent Schmidt Number From Experimental Profiles of Axial Velocity and Concentration for High-Reynolds-Number Jet Flows
,”
Can. Aeronaut. Space J.
,
48
(
3
), pp.
195
200
.
28.
Wen
,
J. X.
,
Kang
,
K.
,
Donchev
,
T.
, and
Karwatzki
,
J. M.
,
2007
, “
Validation of FDS for the Prediction of Medium-Scale Pool Fires
,”
Fire Saf. J.
,
42
(
2
), pp.
127
138
.
29.
Box
,
G.
, and
Wilson
,
K. B.
,
1951
, “
On the Experimental Attainment of Optimum Conditions
,”
J. Royal Stat. Soc. B
,
13
(1), pp.
1
45
.
30.
Waston
,
D. F.
,
1992
,
Contouring: A Guide to the Analysis and Display of Spatial Data
,
Pergamon Press
,
New York
, pp.
130
136
.
31.
Sloan
,
S. W.
,
1993
, “
A Fast Algorithm for Generating Constrained Delaunay Triangulations
,”
Comput. Struct.
,
47
(
3
), pp.
441
450
.
32.
Smith
,
P.
,
Smith
,
S.
,
Thornock
,
J.
,
Jatale
,
A.
,
Nguyen
,
D.
, and
Schroeder
,
B.
,
2012
, “
A Validation Methodology for Quantifying Uncertainty in High Performance Computer-Based Simulations With Sparse Experimental Data
,”
ASME
Paper No. V&V2012-6172.
33.
Feeley
,
R.
,
Frenklach
,
M.
,
Onsum
,
M.
,
Russi
,
T.
,
Arkin
,
A.
, and
Packard
,
A.
,
2006
, “
Model Discrimination Using Data Collaboration
,”
J. Phys. Chem. A
,
110
(
21
), pp.
6803
6813
.
34.
Frenklach
,
M.
,
Packard
,
A.
,
Seiler
,
P.
, and
Feeley
,
R.
,
2004
, “
Collaborative Data Processing in Developing Predictive Models of Complex Reaction Systems
,”
Int. J. Chem. Kinet.
,
36
(
1
), pp.
57
66
.
You do not currently have access to this content.