A validation strategy with copula-based bias approximation approach is proposed to address the 2014 Verification and Validation (V & V) challenge problem developed by the Sandia National Laboratory. The proposed work further incorporates model uncertainty into reliability analysis. Specific issues have been addressed including: (i) uncertainty modeling of model parameters using the Bayesian approach, (ii) uncertainty quantification (UQ) of model outputs using the eigenvector dimension reduction (EDR) method, (iii) model bias calibration with the U-pooling metric, (iv) model bias approximation using the copula-based approach, and (v) reliability analysis considering the model uncertainty. The proposed work is well demonstrated in the challenge problem.

References

References
1.
Hu
,
K. T.
, and
Orient
,
G. E.
, “
The 2014 Sandia V&V Challenge Problem: A Case Study in Simulation, Analysis, and Decision Support
,”
ASME J. Verif. Valid. Uncertainty Quantif.
,
1
(1).
2.
Hills
,
R. G.
, and
Trucano
,
T. G.
,
1999
, “
Statistical Validation of Engineering and Scientific Models: Background
,”
Sandia National Laboratories
,
Report No. SAND99-1256
.
3.
Thacker
,
B. H.
,
Doebling
,
S. W.
,
Hemez
,
F. M.
,
Anderson
,
M. C.
,
Pepin
,
J. E.
, and
Rodriguez
,
E. A.
,
2004
, “
Concepts of Model Verification and Validation
,”
Los Alamos National Laboratory
,
Los Alamos, NM
,
Report No. LA-14167
.
4.
Babuska
,
I.
, and
Oden
,
J. T.
,
2004
, “
Verification and Validation in Computational Engineering and Science: Basic Concepts
,”
Comput. Methods Appl. Mech. Eng.
,
193
(
36–38
), pp.
4057
4066
.
5.
Xi
,
Z.
,
Fu
,
Y.
, and
Yang
,
R. J.
,
2013
, “
Model Bias Characterization in the Design Space Under Uncertainty
,”
Int. J. Performability Eng.
,
9
(
4
), pp.
433
444
.
6.
Zhan
,
Z.
,
Fu
,
Y.
, and
Yang
,
R. J.
,
2013
, “
On Stochastic Model Interpolation and Extrapolation Methods for Vehicle Design
,”
SAE Int. J. Mater. Manuf.
,
6
(
3
), pp.
517
531
.
7.
Zhan
,
Z.
,
Fu
,
Y.
,
Yang
,
R. J.
,
Xi
,
Z.
, and
Shi
,
L.
,
2012
, “
A Bayesian Inference Based Model Interpolation and Extrapolation
,”
SAE Int. J. Mater. Manuf.
,
5
(
2
), pp.
357
364
.
8.
Jiang
,
Z.
,
Chen
,
W.
,
Fu
,
Y.
, and
Yang
,
R. J.
,
2013
, “
Reliability-Based Design Optimization With Model Bias and Data Uncertainty
,”
SAE Int. J. Mater. Manuf.
,
6
(
3
), pp.
502
516
.
9.
Xi
,
Z.
,
Fu
,
Y.
, and
Yang
,
R.
,
2013
, “
An Ensemble Approach for Model Bias Prediction
,”
SAE Int. J. Mater. Manf.
,
6
(
3
), pp.
532
539
.
10.
Higdon
,
D.
,
Gattiker
,
J.
,
Williams
,
B.
, and
Rightley
,
M.
,
2008
, “
Computer Model Calibration Using High-Dimensional Output
,”
J. Am. Stat. Assoc.
,
103
(
482
), pp.
570
583
.
11.
Pearson
,
K.
,
1901
, “
Mathematical Contributions to the Theory of Evolution. X. Supplement to a Memoir on Skew Variation
,”
Philos. Trans. R. Soc. London
,
197
(
287–299
), pp.
443
459
.
12.
Xi
,
Z.
,
Hu
,
C.
, and
Youn
,
B. D.
,
2012
, “
A Comparative Study of Probability Estimation Methods for Reliability Analysis
,”
Struct. Multidiscip. Optim.
,
45
(
1
), pp.
33
52
.
13.
Daniels
,
H. E.
,
1954
, “
Saddlepoint Approximations in Statistics
,”
Ann. Math. Stat.
,
25
(
4
), pp.
631
650
.
14.
Jaynes
,
E. T.
,
1957
, “
Information Theory and Statistical Mechanics
,”
Phys. Rev.
,
106
(
4
), pp.
620
630
.
15.
Johnson
,
N. L.
,
Kotz
,
S.
, and
Balakrishnan
,
N.
,
1994
,
Continuous Univariate Distributions
,
Wiley
,
New York
.
16.
Rossi
,
V.
, and
Vila
,
J. P.
,
2006
, “
Bayesian Multioutput Feedforward Neural Networks Comparison: A Conjugate Prior Approach
,”
IEEE Trans. Neural Networks
,
17
(
1
), pp.
35
47
.
17.
George
,
E. I.
, and
McCulloch
,
R. E.
,
1997
, “
Approaches for Bayesian Variable Selection
,”
Stat. Sin.
,
7
(
2
), pp.
339
373
.
18.
Wang
,
C.
, and
Blei
,
D. M.
,
2013
, “
Variational Inference in Nonconjugate Models
,”
J. Mach. Learn. Res.
,
14
(
1
), pp.
1005
1031
.
19.
Zhu
,
J.
, and
Xing
,
E. P.
,
2009
, “
Maximum Entropy Discrimination Markov Networks
,”
J. Mach. Learn. Res.
,
10
, pp.
2531
2569
.
20.
Berg
,
B. A.
,
2004
,
Markov Chain Monte Carlo Simulations and Their Statistical Analysis
,
World Scientific Publishing
,
Singapore
.
21.
Youn
,
B. D.
,
Xi
,
Z.
, and
Wang
,
P.
,
2008
, “
Eigenvector Dimension Reduction (EDR) Method for Sensitivity-Free Probability Analysis
,”
Struct. Multidiscip. Optim.
,
37
(
1
), pp.
13
28
.
22.
Hu
,
C.
, and
Youn
,
B. D.
,
2011
, “
Adaptive-Sparse Polynomial Chaos Expansion for Reliability Analysis and Design of Complex Engineering Systems
,”
Struct. Multidiscip. Optim.
,
43
(
3
), pp.
419
442
.
23.
Blatman
,
G.
, and
Sudret
,
B.
,
2010
, “
An Adaptive Algorithm to Build Up Sparse Polynomial Chaos Expansions for Stochastic Finite Element Analysis
,”
Probab. Eng. Mech.
,
25
(
2
), pp.
183
197
.
24.
Oladyshkin
,
S.
, and
Nowak
,
W.
,
2012
, “
Data-Driven Uncertainty Quantification Using the Arbitrary Polynomial Chaos Expansion
,”
Reliab. Eng. Syst. Saf.
,
106
, pp.
179
190
.
25.
Coelho
,
R. F.
,
Lebon
,
J.
, and
Bouillard
,
P.
,
2011
, “
Hierarchical Stochastic Metamodels Based on Moving Least Squares and Polynomial Chaos Expansion: Application to the Multiobjective Reliability-Based Optimization of Space Truss Structures
,”
Struct. Multidiscip. Optim.
,
43
(
5
), pp.
707
729
.
26.
Le Maître
,
O. P.
,
Reagan
,
M.
,
Najm
,
H. N.
,
Ghanem
,
R. G.
, and
Knio
,
O. M.
,
2002
, “
A Stochastic Projection Method for Fluid Flow: II. Random Process
,”
J. Comput. Phys.
,
181
(
1
), pp.
9
44
.
27.
Gerstner
,
T.
, and
Griebel
,
M.
,
1998
, “
Numerical Integration Using Sparse Grids
,”
Numer. Algorithms
,
18
(
3–4
), pp.
209
232
.
28.
Rahman
,
S.
, and
Xu
,
H.
,
2004
, “
A Univariate Dimension-Reduction Method for Multi-Dimensional Integration in Stochastic Mechanics
,”
Probab. Eng. Mech.
,
19
(
4
), pp.
393
408
.
29.
Myers
,
H. R.
, and
Montgomery
,
D. C.
,
1995
,
Response Surface Methodology
,
Wiley
,
New York
.
30.
Kennedy
,
M. C.
, and
O’Hagan
,
A.
,
2002
, “
Bayesian Calibration of Computer Models
,”
J. R. Stat. Soc. B
,
63
, pp.
425
464
.
31.
Ferson
,
S.
,
Oberkampf
,
W. L.
, and
Ginzburg
,
L.
,
2008
, “
Model Validation and Predictive Capability for the Thermal Challenge Problem
,”
Comput. Methods Appl. Mech. Eng.
,
197
(
29–32
), pp.
2408
2430
.
32.
Xi
,
Z.
,
Pan
,
H.
,
Fu
,
Y.
, and
Yang
,
R. J.
,
2014
, “
A Copula-Based Approach for Model Bias Characterization
,”
SAE Int. J. Passeng. Cars: Mech. Syst.
,
7
(
2
), pp.
781
786
.
33.
Huard
,
D.
,
Evin
,
G.
, and
Favre
,
A. C.
,
2006
, “
Bayesian Copula Selection
,”
Comput. Stat. Data Anal.
,
51
(
2
), pp.
809
822
.
34.
Roser
,
B. N.
,
1999
,
An Introduction to Copulas
,
Springer
,
New York
.
35.
Fermanian
,
J. D.
,
2005
, “
Goodness-of-Fit Tests for Copulas
,”
J. Multivariate Anal.
,
95
(
1
), pp.
119
152
.
36.
Jaynes
,
E. T.
, and
Bretthorst
,
G. L.
,
2003
,
Probability Theory: The Logic of Science
,
Cambridge University Press
,
Cambridge, UK
.
37.
Hasofer
,
A. M.
, and
Lind
,
N. C.
,
1974
, “
Exact and Invariant Second-Moment Code Format
,”
ASCE J. Eng. Mech.
,
100
(
1
), pp.
111
121
.
38.
Tvedt
,
L.
,
1984
,
Two Second-Order Approximations to the Failure Probability: Section on Structural Reliability
,
A/S Vertas Research
,
Hovik, Norway
.
You do not currently have access to this content.