This paper describes an integrated Bayesian calibration, bias correction, and machine learning approach to the validation challenge problem posed at the Sandia Verification and Validation Challenge Workshop, May 7–9, 2014. Three main challenges are recognized as: I—identification of unknown model parameters; II—quantification of multiple sources of uncertainty; and III—validation assessment when there are no direct experimental measurements associated with one of the quantities of interest (QoIs), i.e., the von Mises stress. This paper addresses these challenges as follows. For challenge I, sensitivity analysis is conducted to select model parameters that have significant impact on the model predictions for the displacement, and then a modular Bayesian approach is performed to calibrate the selected model parameters using experimental displacement data from lab tests under the “pressure only” loading conditions. Challenge II is addressed using a Bayesian model calibration and bias correction approach. For improving predictions of displacement under “pressure plus liquid” loading conditions, a spatial random process (SRP) based model bias correction approach is applied to develop a refined predictive model using experimental displacement data from field tests. For challenge III, the underlying relationship between stress and displacement is identified by training a machine learning model on the simulation data generated from the supplied tank model. Final predictions of stress are made via the machine learning model and using predictions of displacements from the bias-corrected predictive model. The proposed approach not only allows the quantification of multiple sources of uncertainty and errors in the given computer models, but also is able to combine multiple sources of information to improve model performance predictions in untested domains.

References

References
1.
Box
,
G. E.
, and
Draper
,
N. R.
,
1987
,
Empirical Model-Building and Response Surfaces
,
Wiley
,
New York
.
2.
Hu
,
K.
,
2014
, “
2014 V&V Challenge: Problem Statement
,” SAND Report No. 2013-10486P.
3.
Hu
,
K.
, and
Orient
,
G.
,
2015
, “
The 2014 Sandia V&V Challenge Problem: A Case Study in Simulation, Analysis, and Decision Support
,”
ASME J. Verif., Validation Uncertainty Quantif.
(submitted).
4.
Hills
,
R. G.
,
Pilch
,
M.
,
Dowding
,
K. J.
,
Red-Horse
,
J.
,
Paez
,
T. L.
,
Babuška
,
I.
, and
Tempone
,
R.
,
2008
, “
Validation Challenge Workshop
,”
Comput. Methods Appl. Mech. Eng.
,
197
(
29
), pp.
2375
2380
.
5.
Dowding
,
K. J.
,
Pilch
,
M.
, and
Hills
,
R. G.
,
2008
, “
Formulation of the Thermal Problem
,”
Comput. Methods Appl. Mech. Eng.
,
197
(
29
), pp.
2385
2389
.
6.
Babuška
,
I.
,
Nobile
,
F.
, and
Tempone
,
R.
,
2008
, “
Formulation of the Static Frame Problem
,”
Comput. Methods Appl. Mech. Eng.
,
197
(
29
), pp.
2496
2499
.
7.
Red-Horse
,
J.
, and
Paez
,
T.
,
2008
, “
Sandia National Laboratories Validation Workshop: Structural Dynamics Application
,”
Comput. Methods Appl. Mech. Eng.
,
197
(
29
), pp.
2578
2584
.
8.
Bayarri
,
M. J.
,
Berger
,
J. O.
,
Paulo
,
R.
,
Sacks
,
J.
,
Cafeo
,
J. A.
,
Cavendish
,
J.
,
Lin
,
C.-H.
, and
Tu
,
J.
,
2007
, “
A Framework for Validation of Computer Models
,”
Technometrics
,
49
(
2
), pp.
138
154
.
9.
Kennedy
,
M. C.
, and
O'Hagan
,
A.
,
2001
, “
Bayesian Calibration of Computer Models
,”
J. R. Stat. Soc.: Ser. B (Stat. Methodol.)
,
63
(
3
), pp.
425
464
.
10.
Arendt
,
P. D.
,
Apley
,
D. W.
, and
Chen
,
W.
,
2012
, “
Quantification of Model Uncertainty: Calibration, Model Discrepancy, and Identifiability
,”
ASME J. Mech. Des.
,
134
(
10
), p.
100908
.
11.
Schwer
,
L.
,
Mair
,
H.
, and
Crane
,
R.
,
2006
, “
Guide for Verification and Validation in Computational Solid Mechanics
,” ASME V&V 10-2006, New York.
12.
Oberkampf
,
W. L.
,
Sindir
,
M.
, and
Conlisk
,
A.
,
1998
,
Guide for the Verification and Validation of Computational Fluid Dynamics Simulations
, Reston, VA, AIAA-G-077-1998.
13.
Liu
,
Y.
,
Chen
,
W.
,
Arendt
,
P.
, and
Huang
,
H.-Z.
,
2011
, “
Toward a Better Understanding of Model Validation Metrics
,”
ASME J. Mech. Des.
,
133
(
7
), p.
071005
.
14.
Ferson
,
S.
,
Oberkampf
,
W. L.
, and
Ginzburg
,
L.
,
2008
, “
Model Validation and Predictive Capability for the Thermal Challenge Problem
,”
Comput. Methods Appl. Mech. Eng.
,
197
(
29
), pp.
2408
2430
.
15.
Roy
,
C. J.
, and
Oberkampf
,
W. L.
,
2011
, “
A Comprehensive Framework for Verification, Validation, and Uncertainty Quantification in Scientific Computing
,”
Comput. Methods Appl. Mech. Eng.
,
200
(
25
), pp.
2131
2144
.
16.
Jiang
,
X.
, and
Mahadevan
,
S.
,
2008
, “
Bayesian Validation Assessment of Multivariate Computational Models
,”
J. Appl. Stat.
,
35
(
1
), pp.
49
65
.
17.
Li
,
W.
,
Chen
,
W.
,
Jiang
,
Z.
,
Lu
,
Z.
, and
Liu
,
Y.
,
2014
, “
New Validation Metrics for Models With Multiple Correlated Responses
,”
Reliab. Eng. Syst. Saf.
,
127
, pp.
1
11
.
18.
Apley
,
D. W.
,
Liu
,
J.
, and
Chen
,
W.
,
2006
, “
Understanding the Effects of Model Uncertainty in Robust Design With Computer Experiments
,”
ASME J. Mech. Des.
,
128
(
4
), pp.
945
958
.
19.
Jiang
,
Z.
,
Chen
,
W.
,
Fu
,
Y.
, and
Yang
,
R.-J.
,
2013
, “
Reliability-Based Design Optimization With Model Bias and Data Uncertainty
,”
SAE Int. J. Mater. Manuf.
,
6
(
3
), pp.
502
506
.
20.
Chen
,
W.
,
Tsui
,
K.-L.
,
Wang
,
S.
, and
Xiong
,
Y.
,
2008
, “
A Design-Driven Validation Approach Using Bayesian Prediction Models
,”
ASME J. Mech. Des.
,
130
(
2
), p.
021101
.
21.
Oberkampf
,
W. L.
, and
Barone
,
M. F.
,
2006
, “
Measures of Agreement Between Computation and Experiment: Validation Metrics
,”
J. Comput. Phys.
,
217
(
1
), pp.
5
36
.
22.
Zhang
,
R.
, and
Mahadevan
,
S.
,
2003
, “
Bayesian Methodology for Reliability Model Acceptance
,”
Reliab. Eng. Syst. Saf.
,
80
(
1
), pp.
95
103
.
23.
Loehle
,
C.
,
1997
, “
A Hypothesis Testing Framework for Evaluating Ecosystem Model Performance
,”
Ecol. Modell.
,
97
(
3
), pp.
153
165
.
24.
Arendt
,
P. D.
,
Apley
,
D. W.
,
Chen
,
W.
,
Lamb
,
D.
, and
Gorsich
,
D.
,
2012
, “
Improving Identifiability in Model Calibration Using Multiple Responses
,”
ASME J. Mech. Des.
,
134
(
10
), p.
100909
.
25.
Sobol′
,
I. M.
,
2001
, “
Global Sensitivity Indices for Nonlinear Mathematical Models and Their Monte Carlo Estimates
,”
Math. Comput. Simul.
,
55
(
1–3
), pp.
271
280
.
26.
Saltelli
,
A.
,
Tarantola
,
S.
, and
Chan
,
K.-S.
,
1999
, “
A Quantitative Model-Independent Method for Global Sensitivity Analysis of Model Output
,”
Technometrics
,
41
(
1
), pp.
39
56
.
27.
Arendt
,
P. D.
,
Apley
,
D. W.
, and
Chen
,
W.
,
2015
, “
A Preposterior Analysis to Predict Identifiability in Experimental Calibration of Computer Models
,”
IIE Trans.
,
48
(
1
), p.
75
.
28.
Angus
,
J. E.
,
1994
, “
The Probability Integral Transform and Related Results
,”
SIAM Rev.
,
36
(
4
), pp.
652
654
.
29.
Timoshenko
,
S.
,
Woinowsky-Krieger
,
S.
, and
Woinowsky-Krieger
,
S.
,
1959
,
Theory of Plates and Shells
,
McGraw-Hill
,
New York
.
30.
Lee
,
S.
, and
Chen
,
W.
,
2009
, “
A Comparative Study of Uncertainty Propagation Methods for Black-Box Type Problems
,”
Struct. Multidiscip. Optim.
,
37
(
3
), pp.
239
253
.
You do not currently have access to this content.