Our approach to the Sandia Verification and Validation Challenge Problem is to use probability bounds analysis (PBA) based on probabilistic representation for aleatory uncertainties and interval representation for (most) epistemic uncertainties. The nondeterministic model predictions thus take the form of p-boxes, or bounding cumulative distribution functions (CDFs) that contain all possible families of CDFs that could exist within the uncertainty bounds. The scarcity of experimental data provides little support for treatment of all uncertain inputs as purely aleatory uncertainties and also precludes significant calibration of the models. We instead seek to estimate the model form uncertainty at conditions where the experimental data are available, then extrapolate this uncertainty to conditions where no data exist. The modified area validation metric (MAVM) is employed to estimate the model form uncertainty which is important because the model involves significant simplifications (both geometric and physical nature) of the true system. The results of verification and validation processes are treated as additional interval-based uncertainties applied to the nondeterministic model predictions based on which the failure prediction is made. Based on the method employed, we estimate the probability of failure to be as large as 0.0034, concluding that the tanks are unsafe.

References

References
1.
Hu
,
K. T.
, and
Orient
,
G. E.
,
2016
, “
The 2014 Sandia V&V Challenge Problem: A Case Study in Simulation, Analysis, and Decision Support
,”
ASME J. Verif. Validation Uncertainty Quantif.
1
(
1
).
2.
Hu
,
K. T.
,
2014
, “
2014 V&V Challenge: Problem Statement
,” Sandia National Laboratories, Albuquerque, NM,
SAND
Report No. 2013-10486P.
3.
Bernardini
,
A.
, and
Tonon
,
F.
,
2010
,
Bounding Uncertainty in Civil Engineering: Theoretical Background
,
Springer-Verlag
,
Berlin
.
4.
Timoshenko
,
S.
, and
Woinowsky-Krieger
,
S.
,
1987
,
Theory of Plates and Shells
,
McGraw-Hill
,
New York
.
5.
Oberkampf
,
W. L.
, and
Roy
,
C. J.
,
2010
,
Verification and Validation in Scientific Computing
,
Cambridge University Press
,
Cambridge, MA
.
6.
Roy
,
C. J.
, and
Oberkampf
,
W. L.
,
2011
, “
A Comprehensive Framework for Verification, Validation, and Uncertainty Quantification in Scientific Computing
,”
Comput. Methods Appl. Mech. Eng.
,
200
(
25
), pp.
2131
2144
.
7.
Beer
,
M.
,
Ferson
,
S.
, and
Kreinovich
,
V.
,
2013
, “
Imprecise Probabilities in Engineering Analyses
,”
Mech. Syst. Signal Process.
,
37
(
1–2
), pp.
4
29
.
8.
Deodatis
,
G.
, and
Spanos
,
P. D.
,
2011
, “
Computational Stochastic Mechanics
,”
6th International Conference on Computational Stochastic Mechanics
, Island of Rhodes, Greece, June 13–16.
9.
Cullen
,
A. C.
, and
Frey
,
H. C.
,
1999
,
Probabilistic Techniques in Exposure Assessment: A Handbook for Dealing With Variability and Uncertainty in Models and Inputs
,
Plenum Press
,
New York
.
10.
Veneziano
,
D.
,
Agarwal
,
A.
, and
Karaca
,
E.
,
2009
, “
Decision Making With Epistemic Uncertainty Under Safety Constraints: An Application to Seismic Design
,”
Probab. Eng. Mech.
,
24
(
3
), pp.
426
437
.
11.
Roy
,
C. J.
, and
Balch
,
M. S.
,
2012
, “
A Holistic Approach to Uncertainty Quantification With Application to Supersonic Nozzle Thrust
,”
Int. J. Uncertainty Quantif.
,
2
(
4
), pp.
363
381
.
12.
Ghosh
,
J. K.
,
Delampady
,
M.
, and
Samanta
,
T.
,
2006
,
An Introduction to Bayesian Analysis: Theory and Methods
,
Springer
,
Berlin
.
13.
Klir
,
G. J.
,
2006
,
Uncertainty and Information: Foundations of Generalized Information Theory
,
Wiley-Interscience
,
Hoboken, NJ
.
14.
Ferson
,
S.
, and
Hajagos
,
J. G.
,
2004
, “
Arithmetic With Uncertain Numbers: Rigorous and (Often) Best Possible Answers
,”
Reliab. Eng. Syst. Saf.
,
85
(
1–3
), pp.
135
152
.
15.
Ferson
,
S.
, and
Ginzburg
,
L. R.
,
1996
, “
Different Methods are Needed to Propagate Ignorance and Variability
,”
Reliab. Eng. Syst. Saf.
,
54
(
2–3
), pp.
133
144
.
16.
Leonard
,
T.
, and
Hsu
,
J. S. J.
,
1999
,
Bayesian Methods: An Analysis for Statisticians and Interdisciplinary Researchers
,
Cambridge University Press
,
New York
.
17.
van den Bos
,
A.
,
2007
,
Parameter Estimation for Scientists and Engineers
,
Wiley-Interscience
,
Hoboken, NJ
.
18.
AIAA
,
1998
,
AIAA Guide for the Verification and Validation of Computational Fluid Dynamics Simulations (G-077-1998e)
,
American Institute of Aeronautics and Astronautics
,
Reston, VA
.
19.
ASME
,
2006
,
Guide for Verification and Validation in Computational Solid Mechanics
,
ASME
,
New York
, Standard V&V 10-2006.
20.
Kennedy
,
M. C.
, and
O'Hagan
,
A.
,
2001
, “
Bayesian Calibration of Computer Models
,”
J. R. Stat. Soc.
, Ser. B,
63
(
3
), pp.
425
464
.
21.
Oberkampf
,
W. L.
, and
Ferson
,
S.
,
2007
, “
Model Validation Under Both Aleatory and Epistemic Uncertainty
,”
NATO/RTO Symposium on Computational Uncertainty in Military Vehicle Design
, Athens, Greece, Dec. 3–6, Paper No. AVT-147/RSY-022.
22.
Ferson
,
S.
,
Oberkampf
,
W. L.
, and
Ginzburg
,
L.
,
2008
, “
Model Validation and Predictive Capability for the Thermal Challenge Problem
,”
Comput. Methods Appl. Mech. Eng.
,
197
(
29–32
), pp.
2408
2430
.
23.
Voyles
, I
. T.
, and
Roy
,
C. J.
,
2014
, “
Evaluation of Model Validation Techniques in the Presence of Uncertainty
,”
AIAA
Paper No. 2014-0120.
24.
Voyles
, I
. T.
, and
Roy
,
C. J.
,
2015
, “
Evaluation of Model Validation Techniques in the Presence of Aleatory and Epistemic Input Uncertainties
,”
AIAA
Paper No. 2015-1374.
25.
Adams
,
B. M.
,
Bauman
,
L. E.
,
Bohnhoff
,
W. J.
,
Dalbey
,
K. R.
,
Ebeida
,
M. S.
,
Eddy
,
J. P.
,
Eldred
,
M. S.
,
Hough
,
P. D.
,
Hu
,
K. T.
,
Jakeman
,
J. D.
,
Swiler
,
L. P.
, and
Vigil
,
D. M.
,
2013
, “
DAKOTA, A Multilevel Parallel Object-Oriented Framework for Design Optimization, Parameter Estimation, Uncertainty Quantification, and Sensitivity Analysis: Version 5.4 User's Manual
,” Sandia National Laboratories, Alburquerque, NM, Sandia Technical Report No. SAND2010-2183.
26.
Saltelli
,
A.
,
Tarantola
,
S.
,
Campolongo
,
F.
, and
Ratto
,
M.
,
2004
,
Sensitivity Analysis in Practice
,
Wiley
,
Ispra, Italy
.
27.
Roache
,
P. J.
,
2009
,
Fundamentals of Verification and Validation
,
Hermosa Publishers
,
Socorro, NM
.
You do not currently have access to this content.