Engine durability tests are used by manufacturers to demonstrate engine life and minimum performance when subjected to doses of test dusts, often Arizona Road Dust. Grain size distributions are chosen to replicate what enters the engine; less attention is paid to other properties such as composition and shape. We demonstrate here the differences in the probability of interaction of a particle of a given particle Reynolds number on to a vane if particle shape, vane geometry, and flow Reynolds number are varied and discuss why the traditional definition of Stokes number is inadequate for predicting the likelihood of interaction in these flows. We develop a new generalized Stokes number for nozzle guide vanes and demonstrate its use through application to 2D sections of the General Electric E3 nozzle guide vane. The new Stokes number is used to develop a reduced-order probability curve to predict the interaction efficiency of spherical and nonspherical particles, independent of flow conditions and vane geometry. We show that assuming spherical particles instead of more realistic sphericity of 0.75 can lead to as much as 25% difference in the probability of interaction at Stokes numbers of around unity. Finally, we use a hypothetical size distribution to demonstrate the application of the model to predict the total mass fraction of dust interaction with a nozzle guide vane at design point conditions and highlight the potential difference in the accumulation factor between spherical and nonspherical particles.

References

References
1.
Clarkson
,
R. J.
,
Majewicz
,
E. J.
, and
Mack
,
P.
,
2016
, “
A Re-Evaluation of the 2010 Quantitative Understanding of the Effects Volcanic Ash Has on Gas Turbine Engines
,”
Proc. Inst. Mech. Eng., Part G: J. Aerosp. Eng.
,
230
(
12
), pp.
2274
2291
.
2.
Clarkson
,
R.
, and
Simpson
,
H.
,
2017
, “
Maximising Airspace Use During Volcanic Eruptions: Matching Engine Durability against Ash Cloud Occurrence
,” STO-MP-AVT-272, NATO STO, pp.
1
20
.
3.
Vogel
,
A.
,
Durant
,
A. J.
,
Cassiani
,
M.
,
Clarkson
,
R. J.
,
Slaby
,
M.
,
Diplas
,
S.
,
Krüger
,
K.
, and
Stohl
,
A.
,
2019
, “
Simulation of Volcanic Ash Ingestion Into a Large Aero Engine: Particle–Fan Interactions
,”
ASME J. Turbomach.
,
141
(
1
), p.
011010
.
4.
Bojdo
,
N.
,
2012
, “
Rotorcraft Engine Air Particle Separation
,” PhD thesis,
University of Manchester
,
Manchester
.
5.
Ai
,
W.
,
Murray
,
N.
,
Fletcher
,
T. H.
,
Harding
,
S.
,
Lewis
,
S.
, and
Bons
,
J. P.
,
2012
, “
Deposition Near Film Cooling Holes on a High Pressure Turbine Vane
,”
ASME J. Turbomach.
,
134
(
4
), p.
041013
.
6.
Israel
,
R.
, and
Rosner
,
D. E.
,
1982
, “
Use of a Generalized Stokes Number to Determine the Aerodynamic Capture Efficiency of Non-Stokesian Particles From a Compressible Gas Flow
,”
Aerosol. Sci. Technol.
,
2
(
1
), pp.
45
51
.
7.
Sacco
,
C.
,
Bowen
,
C.
,
Lundgreen
,
R.
,
Bons
,
J. P.
,
Ruggiero
,
E.
,
Allen
,
J.
, and
Bailey
,
J.
,
2017
, “
Dynamic Similarity in Turbine Deposition Testing and the Role of Pressure
,” 2017 ASME Turbo Expo, Charlotte, Paper No. GT2017-64961.
8.
Haider
,
A.
, and
Levenspiel
,
O.
,
1989
, “
Drag Coefficient and Terminal Velocity of Spherical and Nonspherical Particles
,”
Powder Technol.
,
58
(
1
), pp.
63
70
.
9.
Smialek
,
J. L.
,
Archer
,
F. A.
, and
Garlick
,
R. G.
,
1994
, “
Turbine Airfoil Degradation in the Persian Gulf War
,”
JOM
,
46
(
12
), pp.
39
41
. Springer.
10.
Giehl
,
C.
,
Brooker
,
R. A.
,
Marxer
,
H.
, and
Nowak
,
M.
,
2017
, “
An Experimental Simulation of Volcanic Ash Deposition in Gas Turbines and Implications for Jet Engine Safety
,”
Chem. Geol.
,
461
, pp.
160
170
.
11.
Kim
,
J.
,
Dunn
,
M. G.
,
Baran
,
A. J.
,
Wade
,
D. P.
, and
Tremba
,
E. L.
,
1993
, “
Deposition of Volcanic Materials in the Hot Sections of Two Gas Turbine Engines
,”
ASME J. Eng. Gas Turbines Power
,
115
(
3
), pp.
641
651
.
12.
Bons
,
J. P.
,
Crosby
,
J.
,
Wammack
,
J. E.
,
Bentley
,
B. I.
, and
Fletcher
,
T. H.
,
2007
, “
High-Pressure Turbine Deposition in Land-Based Gas Turbines From Various Synfuels
,”
ASME J. Eng. Gas Turbines Power
,
129
(
1
), pp.
135
143
.
13.
Crosby
,
J. M.
,
Lewis
,
S.
,
Bons
,
J. P.
,
Ai
,
W.
, and
Fletcher
,
T. H.
,
2008
, “
Effects of Temperature and Particle Size on Deposition in Land Based Turbines
,”
ASME J. Eng. Gas Turbines Power
,
130
(
5
), p.
051503
.
14.
Dean
,
J.
,
Taltavull
,
C.
, and
Clyne
,
T. W.
,
2016
, “
Influence of the Composition and Viscosity of Volcanic Ashes on Their Adhesion Within Gas Turbine Aeroengines
,”
Acta Mater.
,
109
, pp.
8
16
.
15.
Taltavull
,
C.
,
Dean
,
J.
, and
Clyne
,
T. W.
,
2016
, “
Adhesion of Volcanic Ash Particles Under Controlled Conditions and Implications for Their Deposition in Gas Turbines
,”
Adv. Eng. Mater.
,
18
(
5
), pp.
803
813
.
16.
Bons
,
J. P.
,
Prenter
,
R.
, and
Whitaker
,
S.
,
2017
, “
A Simple Physics-Based Model for Particle Rebound and Deposition in Turbomachinery
,”
ASME J. Turbomach.
,
139
(
8
), p.
081009
.
17.
Crowe
,
C.
,
Sommerfeld
,
M.
, and
Tsuji
,
Y.
,
1998
,
Multiphase Flows With Particles and Droplets
,
CRC Press
,
Boca Raton, FL
.
18.
Khan
,
A. R.
, and
Richardson
,
J. F.
,
1987
, “
The Resistance to Motion of a Solid Sphere in a Fluid
,”
Chem. Eng. Commun.
,
62
(
1–6
), pp.
135
150
.
19.
Holdich
,
R. G.
,
2002
,
Fundamentals of Particle Technology
,
Midland Information Technology and Pub.
,
Shepshed, UK
.
20.
Timko
,
L. P.
,
1984
, “
Energy Efficient Engine High Pressure Turbine Component Test Performance Report
,” NASA, NASA Technical Report NASA-CR-168289.
21.
Barker
,
B.
,
2010
, “
Simulation of Coal Ash Deposition on Modern Turbine Nozzle Guide Vanes
,” PhD thesis,
The Ohio State University
,
Columbus, OH
.
22.
Shankara
,
P. S.
,
2009
, “
CFD Simulation and Analysis of Particulate Deposition on Gas Turbine Vanes
,” PhD thesis,
The Ohio State University
,
Columbus, OH
.
23.
Singh
,
S.
, and
Tafti
,
D.
,
2015
, “
Particle Deposition Model for Particulate Flows At High Temperatures in Gas Turbine Components
,”
International Journal of Heat and Fluid Flow
,
52
(
April
), pp.
72
83
.
24.
Whitaker
,
S. M.
,
Prenter
,
R.
, and
Bons
,
J. P.
,
2015
, “
The Effect of Freestream Turbulence on Deposition for Nozzle Guide Vanes
,”
ASME J. Turbomach.
,
137
(
12
), p.
121001
.
25.
Whitaker
,
S. M.
, and
Bons
,
J. P.
2015
, “
Evaluation of Elastic-Plastic Rebound Properties of Coal Fly Ash Particles for Use in a Universal Turbine Deposition Model
,”
2015 ASME Gas Turbo Expo, Montreal, Canada
,
ASME
Paper No. GT2015-43765.
This content is only available via PDF.