Abstract

Particle ingestion into turbine engines can cause significant damage through deposition in internal cooling passages. Musgrove et al. proposed a compact particle separator installed between the combustor bypass exit and turbine vane cooling passage inlet. The design had small pressure losses but provided limited particle separation. Its performance has proved difficult to replicate. Borup et al. recently developed a Magnetic Resonance Imaging (MRI) based technique for full-field, 3D measurements of the mean particle concentration distribution in complex flows. A particle separator based on the Musgrove et al. design was fabricated out of plastic using 3D printing, with the addition of a drain from the collector through which 3% of the total flow was extracted. The separator efficiency was measured at two Reynolds numbers, using water as the working fluid and 33-micron titanium microspheres to represent dust particles. Stokes number was shown to play the dominant role in determining efficiency across studies. MRI was used to obtain the 3D particle volume fraction and 3-component velocity fields. The velocity data showed that flow was poorly distributed between the separator louvers, while the collector flow followed the optimal pattern for particle retention. The MRI data revealed that strong swirling flow in the collector centrifuged particles towards the outer wall of the collector and into a partitioned region of quiescent flow, where they proceeded to exit the collector. Future designs could be improved by re-arranging the louvers to produce a more uniform flow distribution, while maintaining the effective collector design.

This content is only available via PDF.

Article PDF first page preview

Article PDF first page preview
You do not currently have access to this content.