Abstract

Effects of tip clearance size and flowrate on the flow around the tip of an axial turbomachine rotor are studied experimentally. Visualizations and stereo-particle image velocimetry (PIV) measurements in a refractive index-matched facility compare the performance, leakage velocity, and the trajectory, growth rate, and strength of the tip leakage vortex (TLV) for gaps of 0.49% and 2.3% of the blade chord, and two flowrates. Enlarging the tip clearance delays the TLV breakup in the aft part of the rotor passage at high flowrates but causes earlier breakup under pre-stall conditions. It also reduces the entrainment of endwall boundary layer vorticity from the separation point where the leakage and passage flows meet. Reducing the flowrate or tip gap shifts the location of the TLV detachment from the blade suction side (SS) upstream to points where the leakage velocity is 70–80% of the tip speed. Once detached, the growth rates of the total shed circulation are similar for all cases, i.e., varying the gap or flowrate mostly shifts the detachment point. The TLV migration away from the SS decreases with an increasing gap but not with the flowrate. Two mechanisms dominate this migration: initially, the leakage jet pushes the TLV away from the blade at 50% of the leakage velocity. Further downstream, the TLV is driven by its image on the other side of the endwall. Differences in migration rate are caused by the smaller distance between the TLV and its image for the narrow gap, and the increase in initial TLV strength with decreasing flowrate and gap.

References

References
1.
Pampreen
,
R. C.
,
1993
,
Compressor Surge and Stall
,
Concepts ETI
,
Norwich, VT
.
2.
Cumpsty
,
N. A.
,
2004
,
Compressor Aerodynamics
,
2nd ed.
,
Krieger Pub
,
Melbourne, FL
.
3.
Lakshminarayana
,
B.
,
1996
,
Fluid Dynamics and Heat Transfer of Turbomachinery
,
John Wiley & Sons
,
New York, NY
.
4.
Khalid
,
S. A.
,
Khalsa
,
A. S.
,
Waitz
,
I. A.
,
Tan
,
C. S.
,
Greitzer
,
E. M.
,
Cumpsty
,
N. A.
,
Adamczyk
,
J. J.
, and
Marble
,
F. E.
,
1999
, “
Endwall Blockage in Axial Compressors
,”
ASME J. Turbomach.
,
121
(
3
), pp.
499
509
. 10.1115/1.2841344
5.
Ciorciari
,
R.
,
Lesser
,
A.
,
Blaim
,
F.
, and
Niehuis
,
R.
,
2012
, “
Numerical Investigation of Tip Clearance Effects in an Axial Transonic Compressor
,”
J. Therm. Sci.
,
21
(
2
), pp.
109
119
. 10.1007/s11630-012-0525-6
6.
Gourdain
,
N.
,
Wlassow
,
F.
, and
Ottavy
,
X.
,
2012
, “
Effect of Tip Clearance Dimensions and Control of Unsteady Flows in a Multi-Stage High-Pressure Compressor
,”
ASME J. Turbomach.
,
134
(
5
), p.
051005
. 10.1115/1.4003815
7.
You
,
D.
,
Wang
,
M.
,
Moin
,
P.
, and
Mittal
,
R.
,
2006
, “
Effects of Tip-Gap Size on the Tip-Leakage Flow in a Turbomachinery Cascade
,”
Phys. Fluids
,
18
(
10
), pp.
1
14
. 10.1063/1.2354544
8.
Hah
,
C.
,
Hathaway
,
M.
, and
Katz
,
J.
,
2014
, “
Investigation of Unsteady Flow Field in a Low-Speed One and a Half Stage Axial Compressor: Effects of Tip Gap Size on the Tip Clearance Flow Structure At Near Stall Operation
,”
ASME Turbo Expo
,
Düsseldorf, Germany
,
June 16–204
, Paper No. GT2014-27094, p.
V02DT44A040
.
9.
Hah
,
C.
,
Hathaway
,
M.
,
Katz
,
J.
, and
Tan
,
D.
,
2015
, “
Investigation of Unsteady Tip Clearance Flow in a Low-Speed One and Half Stage Axial Compressor With LES and PIV
,”
ASME/JSME/KSME 2015 Joint Fluids Engineering Conference Volume 1: Symposia
,
Seoul, South Korea
,
July 26–31
, Paper No. AJK2015-02061, p.
V001T02A002
.
10.
Storer
,
J.
, and
Cumpsty
,
N.
,
1991
, “
Tip Leakage Flow in Axial Compressors
,”
ASME J. Turbomach.
,
113
(
2
), pp.
252
259
. 10.1115/1.2929095
11.
Muthanna
,
C.
, and
Devenport
,
W. J.
,
2004
, “
Wake of a Compressor Cascade With Tip Gap. Part 1: Mean Flow and Turbulence Structure
,”
AIAA J.
,
42
(
11
), pp.
2320
2331
. 10.2514/1.5270
12.
Wang
,
Y.
, and
Devenport
,
W. J.
,
2004
, “
Wake of a Compressor Cascade With Tip Gap, Part 2: Effects of Endwall Motion
,”
AIAA J.
,
42
(
11
), pp.
2332
2340
. 10.2514/1.5272
13.
Ma
,
R.
, and
Devenport
,
W. J.
,
2007
, “
Tip Gap Effects on the Unsteady Behavior of a Tip Leakage Vortex
,”
AIAA J.
,
45
(
7
), pp.
1713
1724
. 10.2514/1.13536
14.
Williams
,
R.
,
Gregory-Smith
,
D.
,
He
,
L.
, and
Ingram
,
G.
,
2010
, “
Experiments and Computations on Large Tip Clearance Effects in a Linear Cascade
,”
ASME J. Turbomach.
,
132
(
4
), p.
021018
. 10.1115/1.3104611
15.
Inoue
,
M.
,
Kuroumaru
,
M.
, and
Fukuhara
,
M.
,
1986
, “
Behavior of Tip Leakage Flow Behind an Axial Compressor Rotor
,”
ASME J. Eng. Gas Turbines Power
,
108
(
1
), pp.
7
14
. 10.1115/1.3239889
16.
Inoue
,
M.
, and
Kuroumaru
,
M.
,
1989
, “
Structure of Tip Clearance Flow in an Isolated Axial Compressor Rotor
,”
ASME J. Turbomach.
,
111
(
3
), p.
250
. 10.1115/1.3262263
17.
Goto
,
A.
,
1992
, “
Three-Dimensional Flow and Mixing in an Axial Flow Compressor With Different Rotor Tip Clearances
,”
ASME J. Turbomach.
,
114
(
3
), pp.
675
685
. 10.1115/1.2929192
18.
Doukelis
,
A.
,
Mathioudakis
,
K.
, and
Papailiou
,
K.
,
1998
, “
The Effect of Tip Clearance Gap Size and Wall Rotation on the Performance of a High Speed-Annular Compressor Cascade
,”
International Gas Turbine and Aeroengine Congress and Exposition
,
Stockholm, Sweden
,
June 2–5
, Paper No. 98-GT-38, p.
V001T01A011
.
19.
Peacock
,
R. E.
,
1983
, “
A Review of Turbomachinery Tip Gap Effects Part 1: Cascades
,”
Int. J. Heat Fluid Flow
,
3
(
4
), pp.
185
193
. 10.1016/0142-727X(82)90017-0
20.
Peacock
,
R. E.
,
1983
, “
A Review of Turbomachinery Tip Gap Effects Part 2: Rotating Machinery
,”
Int. J. Heat Fluid Flow
,
4
(
1
), pp.
3
16
. 10.1016/0142-727X(83)90019-X
21.
Sakulkaew
,
S.
,
Tan
,
C. S.
,
Donahoo
,
E.
,
Cornelius
,
C.
, and
Montgomery
,
M.
,
2013
, “
Compressor Efficiency Variation With Rotor Tip Gap From Vanishing to Large Clearance
,”
ASME J. Turbomach.
,
135
(
3
), p.
031030
. 10.1115/1.4007547
22.
März
,
J.
,
Hah
,
C.
, and
Neise
,
W.
,
2002
, “
An Experimental and Numerical Investigation Into the Mechanisms of Rotating Instability
,”
ASME J. Turbomach.
,
124
(
7
), pp.
367
375
. 10.1115/1.1460915
23.
Liu
,
B.
,
Wang
,
H.
,
Liu
,
H.
,
Yu
,
H.
,
Jiang
,
H.
, and
Chen
,
M.
,
2004
, “
Experimental Investigation of Unsteady Flow Field in the Tip Region of an Axial Compressor Rotor Passage at Near Stall Condition With SPIV
,”
ASME J. Turbomach.
,
126
(
3
), pp.
360
374
. 10.1115/1.1748367
24.
Yu
,
X. J.
, and
Liu
,
B. J.
,
2007
, “
Stereoscopic PIV Measurement of Unsteady Flows in an Axial Compressor Stage
,”
Exp. Therm. Fluid Sci.
,
31
(
8
), pp.
1049
1060
. 10.1016/j.expthermflusci.2006.11.001
25.
Zhang
,
Z.
,
Yu
,
X.
, and
Liu
,
B.
,
2012
, “
Characteristics of the Tip Leakage Vortex in a Low-Speed Axial Compressor With Different Rotor Tip Gaps
,”
ASME Turbo Expo 2012
,
Copenhagen, Denmark
,
June 11–15
, Paper No. GT2012-69148, pp.
311
322
.
26.
Miorini
,
R. L.
,
Wu
,
H.
, and
Katz
,
J.
,
2012
, “
The Internal Structure of the Tip Leakage Vortex Within the Rotor of an Axial Waterjet Pump
,”
ASME J. Turbomach.
,
134
(
3
), p.
031018
. 10.1115/1.4003065
27.
Wu
,
H.
,
Miorini
,
R. L.
, and
Katz
,
J.
,
2011
, “
Measurements of the Tip Leakage Vortex Structures and Turbulence in the Meridional Plane of an Axial Water-Jet Pump
,”
Exp. Fluids
,
50
(
4
), pp.
989
1003
. 10.1007/s00348-010-0975-0
28.
Wu
,
H.
,
Miorini
,
R. L.
,
Tan
,
D.
, and
Katz
,
J.
,
2012
, “
Turbulence Within the Tip-Leakage Vortex of an Axial Waterjet Pump
,”
AIAA J.
,
50
(
11
), pp.
2574
2587
. 10.2514/1.J051491
29.
Wu
,
H.
,
Tan
,
D.
,
Miorini
,
R. L.
, and
Katz
,
J.
,
2011
, “
Three-Dimensional Flow Structures and Associated Turbulence in the Tip Region of a Waterjet Pump Rotor Blade
,”
Exp. Fluids
,
51
(
6
), pp.
1721
1737
. 10.1007/s00348-011-1189-9
30.
Uzol
,
O.
,
Chow
,
Y. C.
,
Katz
,
J.
, and
Meneveau
,
C.
,
2002
, “
Unobstructed PIV Measurements Within an Axial Turbo-Pump Using Liquid and Blades With Matched Refractive Indices
,”
Exp. Fluids
,
33
(
6
), pp.
909
919
. 10.1007/s00348-002-0494-8
31.
Soranna
,
F.
,
Chow
,
Y.-C.
,
Uzol
,
O.
, and
Katz
,
J.
,
2006
, “
The Effect of Inlet Guide Vanes Wake Impingement on the Flow Structure and Turbulence Around a Rotor Blade
,”
ASME J. Turbomach.
,
128
(
1
), p.
82
. 10.1115/1.2098755
32.
Soranna
,
F.
,
Chow
,
Y.-C.
,
Uzol
,
O.
, and
Katz
,
J.
,
2008
, “
Turbulence Within a Turbomachine Rotor Wake Subject to Nonuniform Contraction
,”
AIAA J.
,
46
(
11
), pp.
2687
2702
. 10.2514/1.31079
33.
Wasserbauer
,
C. A.
,
Weaver
,
H. F.
, and
Senyitko
,
R. G.
,
1995
,
NASA Low-Speed Axial Compressor for Fundamental Research
,
NASA Lewis Research Center
,
Cleveland, OH
.
34.
Wisler
,
D. C.
,
1977
,
Core Compressor Exit Stage Study: Volume I—Blade Design
,
General Electric Co.; Aircraft Engine Group.
,
Cincinnati, OH
.
35.
Tan
,
D.
,
Li
,
Y.
,
Wilkes
,
I.
,
Miorini
,
R. L.
, and
Katz
,
J.
,
2014
, “
PIV Measurements of the Flow in the Tip Region of a Compressor Rotor
,”
ASME 2014 4th Joint US-European Fluids Engineering Division Summer Meeting Collocated With the ASME 2014 12th International Conference on Nanochannels, Microchannels, and Minichannels. Volume 1B, Symposia
,
Chicago, IL
,
Aug. 3–7
, Paper No. FEDSM2014-21593, p.
V01BT10A031
.
36.
Tan
,
D.
,
Li
,
Y.
,
Wilkes
,
I.
,
Miorini
,
R. L.
, and
Katz
,
J.
,
2015
, “
Visualization and Time-Resolved Particle Image Velocimetry Measurements of the Flow in the Tip Region of a Subsonic Compressor Rotor
,”
ASME J. Turbomach.
,
137
(
4
), p.
041007
. 10.1115/1.4028433
37.
Tan
,
D.
,
Li
,
Y.
,
Chen
,
H.
,
Wilkes
,
I.
, and
Katz
,
J.
,
2015
, “
The Three Dimensional Flow Structure and Turbulence in the Tip Region of an Axial Flow Compressor
,”
ASME Turbo Expo 2015: Turbine Technical Conference and Exposition
,
Montreal, QC, Canada
,
June 15–19
, Paper No. GT2015-43385, p.
V02AT37A036
.
38.
Chen
,
H.
,
Li
,
Y.
,
Tan
,
D.
, and
Katz
,
J.
,
2017
, “
Visualizations of Flow Structures in the Rotor Passage of an Axial Compressor at the Onset of Stall
,”
ASME J. Turbomach.
,
139
(
4
), p.
041008
. 10.1115/1.4035076
39.
Furukawa
,
M.
,
Inoue
,
M.
,
Saiki
,
K.
, and
Yamada
,
K.
,
1999
, “
The Role of Tip Leakage Vortex Breakdown in Compressor Rotor Aerodynamics
,”
ASME J. Turbomach.
,
121
(
3
), pp.
469
480
. 10.1115/1.2841339
40.
Schlechtriem
,
S.
, and
Lotzerich
,
M.
,
1997
, “
Breakdown of Tip Leakage Vortices in Compressors at Flow Conditions Close to Stall
,”
International Gas Turbine and Aeroengine Congress and Exposition
,
Orlando, FL
,
June 2–5
, Paper No. 97-GT-41, pp.
1
8
.
41.
Yamada
,
K.
,
Funazaki
,
K.
, and
Furukawa
,
M.
,
2007
, “
The Behavior of Tip Clearance Flow at Near-Stall Condition in a Transonic Axial Compressor Rotor
,”
ASME Turbo Expo 2007
,
Montreal, QC, Canada
,
May 25–17
, Paper No. GT2007-27725, pp.
295
306
.
42.
Li
,
Y.
,
Tan
,
D.
,
Chen
,
H.
, and
Katz
,
J.
,
2015
, “
Effects of Tip Gap Size on the Flow Structure in the Tip Region of an Axial Turbomachine
,”
ASME/JSME/KSME 2015 Joint Fluids Engineering Conference Volume 1: Symposia
,
Seoul, South Korea
,
July 26–31
, Paper No. AJK2015-33787, p.
V001T33A023
.
43.
Li
,
Y.
,
Chen
,
H.
,
Tan
,
D.
, and
Katz
,
J.
,
2016
, “
Effects of Tip Clearance and Operating Conditions on the Flow Structure and Reynolds Stresses Within an Axial Compressor Rotor Passage
,”
ASME Turbo Expo
,
Seoul, South Korea
,
June 13–17
, Paper No. GT2016-57050, p.
V02AT37A030
.
44.
Bai
,
K.
, and
Katz
,
J.
,
2014
, “
On the Refractive Index of Sodium Iodide Solutions for Index Matching in PIV
,”
Exp. Fluids
,
55
(
4
), pp.
1
6
. 10.1007/s00348-014-1704-x
45.
Wieneke
,
B.
,
2005
, “
Stereo-PIV Using Self-Calibration on Particle Images
,”
Exp. Fluids
,
39
(
2
), pp.
267
280
. 10.1007/s00348-005-0962-z
46.
Roth
,
G. I.
, and
Katz
,
J.
,
2001
, “
Five Techniques for Increasing the Speed and Accuracy of PIV Interrogation
,”
Meas. Sci. Technol.
,
12
(
3
), pp.
238
245
. 10.1088/0957-0233/12/3/302
47.
Sridhar
,
G.
, and
Katz
,
J.
,
1995
, “
Drag and Lift Forces on Microscopic Bubbles Entrained by a Vortex
,”
Phys. Fluids
,
7
(
2
), pp.
389
399
. 10.1063/1.868637
48.
Tan
,
D.
,
Li
,
Y.
,
Wilkes
,
I.
,
Vagnoni
,
E.
,
Miorini
,
R.
, and
Katz
,
J.
,
2015
, “
Experimental Investigation of the Role of Large Scale Cavitating Vortical Structures in Performance Breakdown of an Axial Waterjet Pump
,”
ASME J. Fluids Eng.
,
137
(
11
), p.
111301
. 10.1115/1.4030614
49.
Chen
,
H.
,
Doeller
,
N.
,
Li
,
Y.
, and
Katz
,
J.
,
2017
, “
Measurements of the Flow and Pressure Within an Axial Waterjet Pump During Cavitation Breakdown
,”
International Symposium on Transporat Phenomena and Dynamics of Rotating Machinery
,
Maui, HI
,
Dec. 16–21
, pp.
1
12
.
50.
Lindau
,
J. W.
,
Pena
,
C.
,
Baker
,
W. J.
,
Dreyer
,
J. J.
,
Moody
,
W. L.
,
Kunz
,
R. F.
, and
Paterson
,
E. G.
,
2012
, “
Modeling of Cavitating Flow Through Waterjet Propulsors
,”
Int. J. Rotating Mach.
,
2012
, pp.
1
13
. 10.1155/2012/716392
51.
Farrell
,
K. J.
, and
Billet
,
M. L.
,
1994
, “
A Correlation of Leakage Vortex Cavitation in Axial-Flow Pumps
,”
ASME J. Fluids Eng.
,
116
(
3
), pp.
551
557
. 10.1115/1.2910312
52.
Yamamoto
,
K.
, and
Tsujimoto
,
Y.
,
2009
, “
Backflow Vortex Cavitation and Its Effects on Cavitation Instabilities
,”
Int. J. Fluid Mach. Syst.
,
2
(
1
), pp.
40
54
. 10.5293/IJFMS.2009.2.1.040
53.
Yamanishi
,
N.
,
Fukao
,
S.
,
Qiao
,
X.
,
Kato
,
C.
, and
Tsujimoto
,
Y.
,
2007
, “
LES Simulation of Backflow Vortex Structure at the Inlet of an Inducer
,”
ASME J. Fluids Eng.
,
129
(
5
), pp.
587
594
. 10.1115/1.2717613
54.
Yokota
,
K.
,
Mitsuda
,
K.
,
Tsujimoto
,
Y.
, and
Kato
,
C.
,
2004
, “
A Study of Vortex Structure in the Shear Layer Between Main Flow and Swirling Backflow
,”
JSME Int. J., Ser. B
,
47
(
3
), pp.
541
548
. 10.1299/jsmeb.47.541
55.
Yokota
,
K.
,
Kurahara
,
K.
,
Kataoka
,
D.
,
Tsujimoto
,
Y.
, and
Acosta
,
A. J.
,
1999
, “
A Study of Swirling Backflow and Vortex Structure at the Inlet of an Inducer
,”
JSME Int. J.
,
42
(
3
), pp.
451
459
. 10.1299/jsmeb.42.451
56.
Day
,
I. J.
,
2015
, “
Stall, Surge, and 75 Years of Research
,”
ASME J. Turbomach.
,
138
(
1
), p.
011001
. 10.1115/1.4031473
57.
Pullan
,
G.
,
Young
,
A. M.
,
Day
,
I. J.
,
Greitzer
,
E. M.
, and
Spakovszky
,
Z. S.
,
2015
, “
Origins and Structure of Spike-Type Rotating Stall
,”
ASME J. Turbomach.
,
137
(
5
), p.
051007
. 10.1115/1.4028494
58.
Day
,
I. J.
,
1993
, “
Stall Inception in Axial Flow Compressors
,”
ASME J. Turbomach.
,
115
(
1
), pp.
1
9
. 10.1115/1.2929209
59.
You
,
D.
,
Wang
,
M.
,
Moin
,
P.
, and
Mittal
,
R.
,
2007
, “
Large-Eddy Simulation Analysis of Mechanisms for Viscous Losses in a Turbomachinery Tip-Clearance Flow
,”
J. Fluid Mech.
,
586
(
Sept.
), pp.
177
204
. 10.1017/S0022112007006842
60.
Chen
,
G. T.
,
Greitzer
,
E. M.
,
Tan
,
C. S.
, and
Marble
,
F. E.
,
1991
, “
Similarity Analysis of Compressor Tip Clearance Flow Structure
,”
ASME J. Turbomach.
,
113
(
2
), p.
260
. 10.1115/1.2929098
61.
Kang
,
S.
, and
Hirsch
,
C.
,
1993
, “
Experimental Study on the Three- Dimensional Flow Within a Compressor Cascade With Tip Clearance : Part I—Velocity and Pressure Fields
,”
ASME J. Turbomach.
,
115
(
3
), pp.
435
443
. 10.1115/1.2929270
62.
Gharib
,
M.
,
Rambod
,
E.
, and
Shariff
,
K.
,
1998
, “
A Universal Time Scale for Vortex Ring Formation
,”
J. Fluid Mech.
,
360
(
Apr.
), pp.
121
140
. 10.1017/S0022112097008410
63.
Rosenfeld
,
M.
,
Rambod
,
E.
, and
Gharib
,
M.
,
1998
, “
Circulation and Formation Number of Laminar Vortex Rings
,”
J. Fluid Mech.
,
376
(
Dec.
), pp.
297
318
. 10.1017/S0022112098003115
64.
Shusser
,
M.
, and
Gharib
,
M.
,
2000
, “
Energy and Velocity of a Forming Vortex Ring
,”
Phys. Fluids
,
12
(
3
), pp.
618
621
. 10.1063/1.870268
65.
Mohseni
,
K.
, and
Gharib
,
M.
,
1998
, “
A Model for Universal Time Scale of Vortex Ring Formation
,”
Phys. Fluids
,
10
(
10
), pp.
2436
2438
. 10.1063/1.869785
66.
Mohseni
,
K.
,
2006
, “
A Formulation for Calculating the Translational Velocity of a Vortex Ring or Pair
,”
Bioinspiration Biomimetics
,
1
(
4
), pp.
S57
S64
. 10.1088/1748-3182/1/4/S08
You do not currently have access to this content.