Abstract

The effect of the tip-shroud seal on the flutter onset of a shrouded turbine rotor blade, representative of a modern gas turbine, is numerically tested, and the contributions to the work per cycle of the aerofoil and the tip shroud are clearly identified. The numerical simulations are conducted using a linearized frequency-domain solver. The flutter stability of the shrouded rotor blade is evaluated for an edgewise mode and compared with the standard industrial approach of not including the tip-shroud cavity. It turns out that including the tip shroud significantly changes the stability prediction of the rotor blade. This is due to two facts. First, the amplitude of the unsteady pressure created in the inter-fin cavity due to the motion of the airfoil is much greater than that of the airfoil. The impact of this contribution increases with the frequency. Second, the effect of the outer shroud of the rotor blade, which usually is not included either in the simulations, has an opposite trend with the nodal diameter than the airfoil reducing the maximum and minimum damping. It is concluded that the combined effect of the seal and its platform tends to stabilize the edgewise mode of the rotor blade for all the examined nodal diameters and reduced frequencies. Finally, the numerical results are shown to be consistent with those obtained using an analytical simplified model to account for the effect of the labyrinth seals.

References

References
1.
Shahpar
,
S.
, and
Lapworth
,
L.
,
2003
, “
Padram: Parametric Design and Rapid Meshing System for Turbomachinery Optimization
,”
ASME Turbo Expo 2003
,
Atlanta, GA
,
June 16–19
, Vol.
6
, pp.
579
590
, ASME Paper 2003-GT-38698. 10.1115/GT2003-38698
2.
Burgos
,
M.
,
Chia
,
J.
,
Corral
,
R.
, and
Lopez
,
C.
,
2010
, “
Rapid Meshing of Turbomachinery Rows Using Semiunstructured Multi-Block Conformal Grids
,”
Eng. Comput.
,
26
(
4
), pp.
351
363
. 10.1007/s00366-009-0169-7
3.
Hall
,
K.
, and
Lorence
,
C.
,
1993
, “
Calculation of Threedimensional Unsteady Flows in Turbomachinery Using the Linearized Harmonic Euler Equations
,”
ASME J. Turbomach.
,
114
(
4
), pp.
800
809
. 10.1115/1.2929318
4.
Sbardella
,
L.
, and
Imregun
,
M.
,
2001
, “
Linearized Unsteady Viscous Turbomachinery Flows Using Hybrid Grids
,”
ASME J. Turbomach.
,
123
(
3
), pp.
568
582
. 10.1115/1.1371777
5.
Corral
,
R.
,
Gallardo
,
J. M.
, and
Vasco
,
C.
,
2007
, “
Aeroelastic Stability of Welded-in-Pair Low Pressure Turbine Rotor Blades: A Comparative Study Using Linear Methods
,”
ASME J. Turbomach.
,
129
(
1
), pp.
72
83
. 10.1115/1.2366512
6.
Besem
,
F. M.
, and
Kielb
,
R. E.
,
2017
, “
Influence of the Tip Clearance on a Compressor Blade Aerodynamic Damping
,”
J. Propul. Power
,
33
(
1
), pp.
227
233
. 10.2514/1.B36121
7.
Huang
,
X.
,
He
,
L.
, and
Bell
,
D.
,
2006
, “
An Experimental Investigation into Turbine Flutter Characteristic at Different Tip-Clearances
,”
ASME Turbo Expo 2006: Power for Land, Sea, and Air
,
American Society of Mechanical Engineers
,
Barcelona, Spain
,
May 8–11
, pp.
1071
1080
.
8.
Norryd
,
M.
, and
Bölcs
,
A.
,
1998
, “
Experimental Investigation of Unsteady Pressure Behaviours in a Linear Turbine Cascade
,”
Unsteady Aerodynamics and Aeroelasticity of Turbomachines
,
Springer, New York
, pp.
103
116
.
9.
Bölcs
,
A.
, and
Fransson
,
T. H.
,
1986
, “
Aeroelasticity in Turbomachines. Comparison of Theoretical and Experimental Cascade Results
,” Technical Report 13, Ecole Polytechnique Federale de Lausanne (Switzerland) Lab de Thermique Appliquee.
10.
Teixeira
,
M. A. M.
,
Petrie-Repar
,
P.
, and
Kameyama
,
S.
,
2015
, “
Tip Clearance Influence on Aeroelastic Stability of an Axial Turbine Blade Row
,”
ISUAAAT 14
,
Stockholm, Sweden
,
Sept. 8–11
, pp.
201
210
.
11.
Alford
,
J.
,
1964
, “
Protection of Labyrinth Seals From Flexural Vibration
,”
ASME J. Eng. Gas Turbines Power
,
86
(
2
), pp.
141
147
. 10.1115/1.3677564
12.
Abbot
,
D. R.
,
1981
, “
Advances in Labyrinth Seal Aeroelastic Instability Prediction and Prevention
,”
ASME J. Eng. Gas Turbines Power
,
103
(
2
), pp.
308
312
. 10.1115/1.3230721
13.
Mare
,
L. D.
,
Imregun
,
M.
,
Green
,
J.
, and
Sayma
,
A. I.
,
2010
, “
A Numerical Study on Labyrinth Seal Flutter
,”
ASME J. Tribol.
,
132
(
2
), p.
022201
. 10.1115/1.3204774
14.
Corral
,
R.
, and
Vega
,
A.
,
2018
, “
Conceptual Flutter Analysis of Labyrinth Seals Using Analytical Models. Part I: Theoretical Background
,”
ASME J. Turbomach.
,
140
(
10
), p.
121006
. 10.1115/1.4041373
15.
Corral
,
R.
,
Escribano
,
A.
,
Gisbert
,
F.
,
Serrano
,
A.
, and
Vasco
,
C.
,
2003
, “
Validation of a Linear Multigrid Accelerated Unstructured Navier-Stokes Solver for the Computation of Turbine Blades on Hybrid Grids
,”
9th AIAA/CEAS Aeroacoustics Conference
,
Hilton Head, SC
,
May 12–14
, AIAA Paper 2003–3326.
16.
Burgos
,
M.
,
Corral
,
R.
, and
Contreras
,
J.
,
2011
, “
Efficient Edge Based Rotor/Stator Interaction Method
,”
AIAA J.
,
41
(
1
), pp.
19
31
. 10.2514/1.44512
17.
Corral
,
R.
,
Gisbert
,
F.
, and
Pueblas
,
J.
,
2017
, “
Efficient Execution of a Parallel Edged-Based Navier-Stokes Solver on Graphics Processing Units
,”
Int. J. Comp. Fluid Dyn.
,
31
(
2
), pp.
1
16
.
18.
Giles
,
M. B.
,
1990
, “
Non-Reflecting Boundary Conditions for Euler Equation Calculations
,”
AIAA J.
,
28
(
12
), pp.
2050
2057
. 10.2514/3.10521
19.
Corral
,
R.
, and
Vega
,
A.
,
2016
, “
Physics of Vibrating Turbine Airfoils at Low Reduced Frequency
,”
AIAA J. Propul. Power
,
32
(
2
), pp.
325
336
. 10.2514/1.B35572
20.
Vega
,
A.
, and
Corral
,
R.
,
2016
, “
The Low Reduced Frequency Limit of Vibrating Airfoils - Part II: Numerical Experiments
,”
ASME J. Turbomach.
,
128
(
2
), p.
021005
. 10.1115/1.4031777
21.
Corral
,
R.
,
Beloki
,
J.
,
Calza
,
P.
, and
Elliot
,
R.
,
2019
, “
Flutter Generation and Control Using Mistuning in a Turbine Rotating Rig
,”
AIAA J.
,
57
(
2
), pp.
782
795
. 10.2514/1.J056943
22.
Palmer
,
T. R.
,
Tan
,
C. S.
,
Zuniga
,
H.
,
Little
,
D.
,
Montgomery
,
M.
, and
Malandra
,
A.
,
2016
, “
Quantifying Loss Mechanisms in Turbine Tip Shroud Cavity Flows
,”
ASME J. Turbomach.
,
138
(
9
), p.
091006
. 10.1115/1.4032922
23.
Corral
,
R.
, and
Vega
,
A.
,
2016
, “
The Low Reduced Frequency Limit of Vibrating Airfoils - Part I: Theoretical Analysis
,”
ASME J. Turbomach.
,
138
(
2
), p.
021004
. 10.1115/1.4031776
24.
Teixeira
,
M. A. M.
, and
Kielb
,
R. E.
,
2017
, “
Tip Clearance Influence on Aerodynamic Damping Maps
,”
ETC12
,
Stockholm, Sweden
,
Apr. 3–7
, ETC2017-300.
25.
Vega
,
A.
, and
Corral
,
R.
,
2018
, “
Conceptual Flutter Analysis of Labyrinth Seals Using Analytical Models. Part II: Physical Interpretation
,”
ASME J. Turbomach.
,
140
(
10
), p.
121007
. 10.1115/1.4041377
You do not currently have access to this content.