The experimental results reported in this contribution address the time-dependent impact of periodically unsteady wakes on the development of profile and end wall boundary layers and consequently on the secondary flow system. Experimental investigations are conducted on an annular 1.5 stage axial turbine rig at Ruhr-Universität Bochum’s Chair of Thermal Turbomachines and Aeroengines. The object under investigation is a modified T106 profile low-pressure turbine (LPT) stator row at a representative exit flow Reynolds number of 200,000. By making use of an annular geometry instead of a linear cascade, the influence of curvilinear end walls, nonuniform, increasing pitch across the span and radial flow migration can be represented. Incoming wakes are generated by a variable-speed driven rotor equipped with cylindrical bars. Special emphasis is put on the wake-induced recurrent formation, suppression, weakening, and displacement of individual vortices and separated flow regimes. For this, based on a comprehensive set of time-resolved measurement data, the interaction of impinging bar wakes and boundary layer flow and thus separation and its periodic manipulation along the passage end walls and on the blade suction surface are studied within the frequency domain.

References

References
1.
Sinkwitz
,
M.
,
Winhart
,
B.
,
Engelmann
,
D.
,
di Mare
,
F.
, and
Mailach
,
R.
,
2019
, “
Experimental and Numerical Investigation of Secondary Flow Structures in an Annular LPT Cascade Under Periodic Wake Impact—Part 1: Experimental Results
,”
ASME J. Turbomach.
,
141
(
2
), pp.
021008
.
2.
Stotz
,
S.
,
Guendogdu
,
Y.
, and
Niehuis
,
R.
,
2017
, “
Experimental Investigation of Pressure Side Flow Separation on the T106C Airfoil at High Suction Side Incidence Flow
,”
ASME J. Turbomach.
,
139
(
5
), pp.
051007
.
3.
Denton
,
J. D.
,
1993
, “
The 1993 IGTI Scholar Lecture: Loss Mechanisms in Turbomachines
,”
ASME J. Turbomach.
,
115
(
4
), pp.
621
656
.
4.
Langston
,
L. S.
,
2001
, “
Secondary Flows in Axial Turbines—A Review
,”
Ann. N. Y. Acad. Sci.
,
934
(
1
), pp.
11
26
.
5.
Puddu
,
P.
,
Palomba
,
C.
, and
Nurzia
,
F.
,
2006
, “
Time–Space Evolution of Secondary Flow Structures in a Two–Stage Low–Speed Turbine
,”
Proceedings of ASME Turbo Expo 2006: Power for Land, Sea, and Air
,
Barcelona, Spain
,
May 8–11
, Paper No. GT2006-90787.
6.
Kang
,
S.
, and
Hirsch
,
C.
,
1991
, “
Three Dimensional Flow in a Linear Compressor Cascade at Design Conditions
,”
Proceedings of ASME 1991 International Gas Turbine and Aeroengine Congress and Exposition
,
Orlando, FL
,
June 3–6
, Paper No. 91-GT-114.
7.
Hodson
,
H. P.
, and
Dawes
,
W. N.
,
1998
, “
On the Interpretation of Measured Profile Losses in Unsteady Wake–Turbine Blade Interaction Studies
,”
ASME J. Turbomach.
,
120
(
2
), pp.
276
284
.
8.
Volino
,
R. J.
,
2011
, “
Effect of Unsteady Wakes on Boundary Layer Separation on a Very High Lift Low Pressure Turbine Airfoil
,”
ASME J. Turbomach.
,
134
(
1
), p.
011011
.
9.
Ciorciari
,
R.
,
Kirik
,
I.
, and
Niehuis
,
R.
,
2014
, “
Effects of Unsteady Wakes on the Secondary Flows in the Linear T106 Turbine Cascade
,”
ASME J. Turbomach.
,
136
(
9
), pp.
091010
.
10.
Krug
,
A.
,
Busse
,
P.
, and
Vogeler
,
K.
,
2015
, “
Experimental Investigation into the Effects of the Steady Wake-Tip Clearance Vortex Interaction in a Compressor Cascade
,”
ASME J. Turbomach.
,
137
(
6
), p.
061006
.
11.
Berrino
,
M.
,
Lengani
,
D.
,
Simoni
,
D.
,
Ubaldi
,
M.
,
Zunino
,
P.
, and
Bertini
,
F.
,
2015
, “
Dynamics and Turbulence Characteristics of Wake-Boundary Layer Interaction in a Low Pressure Turbine Blade
,”
Proceedings of ASME Turbo Expo 2015
,
Montreal, Canada
,
June 15–19
, Paper No. GT2015-42626.
12.
Infantino
,
D.
,
Satta
,
F.
,
Simoni
,
D.
,
Ubaldi
,
M.
,
Zunino
,
P.
, and
Bertini
,
F.
,
2015
, “
Phase-Locked Investigation of Secondary Flows Perturbed by Passing Wakes in a High-Lift LPT Turbine Cascade
,”
Proceedings of ASME Turbo Expo
,
Montreal, Quebec, Canada
,
June 15–19
, Paper No. GT2015-42480.
13.
Lengani
,
D.
,
Simoni
,
D.
,
Ubaldi
,
M.
,
Zunino
,
P.
, and
Bertini
,
F.
,
2017
, “
Time Resolved PIV Measurements of the Unsteady Wake Migration in a LPT Blade Passage: Effect of the Wake Passing Frequency
,”
Proceedings of 12th European Conference on Turbomachinery, Fluid Dynamics and Thermodynamics, ETC12
,
Stockholm, Sweden
,
Apr. 3–7
, Paper No. ETC2017-324.
14.
Hodson
,
H. P.
, and
Howell
,
R. J.
,
2005
, “
The Role of Transition in High-Lift Low-Pressure Turbines for Aeroengines
,”
Progr. Aerosp. Sci.
,
41
(
6
), pp.
419
454
.
15.
Sinkwitz
,
M.
,
Engelmann
,
D.
, and
Mailach
,
R.
,
2017
, “
Experimental Investigation of Periodically Unsteady Wake Impact on Secondary Flow in a 1.5 Stage Full Annular LPT Cascade With Modified T106 Blading
,”
Proceedings of ASME Turbo Expo 2017
,
Charlotte, NC
,
June 26–30
, Paper No. GT2017-64390.
16.
Winhart
,
B.
,
Sinkwitz
,
M.
,
Schramm
,
A.
,
Engelmann
,
D.
,
di Mare
,
F.
, and
Mailach
,
R.
,
2019
, “
Experimental and Numerical Investigation of Secondary Flow Structures in an Annular LPT Cascade Under Periodic Wake Impact—Part 2: Numerical Results
,”
ASME J. Turbomach.
,
141
(
2
), pp.
021009
.
17.
Winhart
,
B.
,
Sinkwitz
,
M.
,
Engelmann
,
D.
,
di Mare
,
F.
, and
Mailach
,
R.
,
2018
, “
On the Periodically Unsteady Interaction of Wakes, Secondary Flow Development and Boundary Layer Flow in an Annular LPT Cascade: Part 2—Numerical Investigation
,”
Proceedings of ASME Turbo Expo 2018
,
Oslo, Norway
,
June 11–15
, Paper No. GT2018-76873.
18.
Lampart
,
P.
,
2009
, “
Investigation of Endwall Flows and Losses in Axial Turbines. Part I. Formation of Endwall Flows and Losses
,”
J. Theor. Appl. Mech.
,
47
(
2
), pp.
321
342
.
19.
Vera
,
M.
,
de la Rosa Blanco
,
E.
,
Hodson
,
H.
, and
Vazquez
,
R.
,
2008
, “
Endwall Boundary Layer Development in an Engine Representative Four-Stage Low Pressure Turbine Rig
,”
ASME J. Turbomach.
,
131
(
1
), p.
011017
.
You do not currently have access to this content.