Abstract

A sensitivity analysis method for flow stability of axial compressors based on meridional flow is proposed and employed to reveal the sensitive region of stability in the present article. The meridional stability model that transforms the stability problem into an eigenvalue problem enables flow stability to be quantitatively expressed by system eigenvalues. Using the eigenvalue representing the developing characteristics of the perturbations as the targeted parameter and incorporating the adjoint method and the induced boundary conditions, the sensitivity analysis method for the stability problem of the compressor based on meridional flow is established to identify sensitive regions in the flow field. In this study, a low-speed compressor stage at Beihang University, named TA36, is analyzed. The stability prediction model accurately predicts the stall margin and the sensitivity analysis of the base flow parameters reveals that the onset of the rotating stall is particularly sensitive to the blade tip region of the rotor. Meanwhile, the sensitivity analysis of the external source terms shows that applying specific control to the flow field near the tip of the blade can benefit the stall margin of the compressor. The theoretical method proposed in this work effectively identifies the positions of stability sensitivity, which provides valuable insights into understanding the unstable regions and mechanisms of stall inception in axial compressors. The sensitivity analysis to the external source term can guide the design of the flow control methods.

References

1.
Ballal
,
D. R.
, and
Zelina
,
J.
,
2004
, “
Progress in Aeroengine Technology (1939–2003)
,”
J. Aircr.
,
41
(
1
), pp.
43
50
.
2.
Day
,
I. J.
,
2016
, “
Stall, Surge, and 75 Years of Research
,”
ASME J. Turbomach.
,
138
(
1
), p.
011001
.
3.
Garnier
,
V. H.
,
Epstein
,
A. H.
, and
Greitzer
,
E. M.
,
1991
, “
Rotating Waves as a Stall Inception Indication in Axial Compressors
,”
ASME J. Turbomach.
,
113
(
2
), pp.
290
301
.
4.
Sun
,
D.
,
Li
,
J.
,
Dong
,
X.
,
Xu
,
R.
, and
Sun
,
X.
,
2022
, “
Foam-Metal Casing Treatment on an Axial Flow Compressor: Stability Improvement and Noise Reduction
,”
ASME J. Turbomach.
,
144
(
1
), p.
011003
.
5.
Xu
,
D.
,
Zhu
,
H.
,
Dong
,
X.
,
Sun
,
D.
, and
Sun
,
X.
,
2023
, “
Theoretical and Experimental Investigation on the Stall Inception of Low-Speed Axial Compressors With Swept Rotor Blades
,”
Aerosp. Sci. Technol.
,
142
(
Part B
), p.
108659
.
6.
Sun
,
D.
,
Wang
,
Y.
,
Li
,
J.
,
Shen
,
Z.
,
Geng
,
C.
,
Dong
,
X.
,
Wang
,
X.
, and
Sun
,
X.
,
2023
, “
Optimization of Impedance Boundary-Controlled Casing Treatment on Subsonic Compressors
,”
J. Mech. Sci. Technol.
,
37
(
5
), pp.
2161
2169
.
7.
Emmons
,
H. W.
,
Pearson
,
C. E.
, and
Grant
,
H. P.
,
1955
, “
Compressor Surge and Stall Propagation
,”
Trans. Am. Soc. Mech. Eng.
,
77
(
4
), pp.
455
467
.
8.
Inoue
,
M.
,
Kuroumaru
,
M.
,
Tanino
,
T.
, and
Furukawa
,
M.
,
2000
, “
Propagation of Multiple Short-Length-Scale Stall Cells in an Axial Compressor Rotor
,”
ASME J. Turbomach.
,
122
(
1
), pp.
45
54
.
9.
Pullan
,
G.
,
Young
,
A. M.
,
Day
,
I. J.
,
Greitzer
,
E. M.
, and
Spakovszky
,
Z. S.
,
2015
, “
Origins and Structure of Spike-Type Rotating Stall
,”
ASME J. Turbomach.
,
137
(
5
), p.
051007
.
10.
Mao
,
X.
,
Liu
,
B.
,
Tang
,
T.
, and
Zhao
,
H.
,
2018
, “
The Impact of Casing Groove Location on the Flow Instability in a Counter-Rotating Axial Flow Compressor
,”
Aerosp. Sci. Technol.
,
76
, pp.
250
259
.
11.
Shi
,
L.
,
Liu
,
B.
,
Na
,
Z.
,
Wu
,
X.
, and
Lu
,
X.
,
2015
, “
Experimental Investigation of a Counter-Rotating Compressor With Boundary Layer Suction
,”
Chin. J. Aeronaut.
,
28
(
4
), pp.
1044
1054
.
12.
Zhao
,
X.
,
Li
,
Y.
,
Wu
,
Y.
, and
Li
,
J.
,
2012
, “
Investigation of Endwall Flow Behavior With Plasma Flow Control on a Highly Loaded Compressor Cascade
,”
Int. J. Therm. Sci.
,
21
(
4
), pp.
295
301
.
13.
Jameson
,
A.
,
2003
,
Aerodynamic Shape Optimization Using the Adjoint Method
,
Lectures at the Von Karman Institute
,
Brussels
.
14.
Giebmanns
,
A.
,
Backhaus
,
J.
,
Frey
,
C.
, and
Schnell
,
R.
,
2013
, “
Compressor Leading Edge Sensitivities and Analysis With an Adjoint Flow Solver
,”
ASME Turbo Expo: Power for Land, Sea, and Air
,
San Antonio, TX
,
Nov. 14
, p.
55225
.
15.
Walther
,
B.
, and
Nadarajah
,
S.
,
2015
, “
Optimum Shape Design for Multirow Turbomachinery Configurations Using a Discrete Adjoint Approach and an Efficient Radial Basis Function Deformation Scheme for Complex Multiblock Grids
,”
ASME J. Turbomach.
,
137
(
8
), p.
081006
.
16.
Schmidt
,
R.
,
Voigt
,
M.
,
Vogeler
,
K.
, and
Meyer
,
M.
,
2017
, “
Comparison of Two Methods for Sensitivity Analysis of Compressor Blades
,”
ASME J. Turbomach.
,
139
(
11
), p.
111006
.
17.
Sun
,
X.
,
Liu
,
X.
,
Hou
,
R.
, and
Sun
,
D.
,
2013
, “
A General Theory of Flow-Instability Inception in Turbomachinery
,”
AIAA J.
,
51
(
7
), pp.
1675
1687
.
18.
He
,
C.
,
Sun
,
D.
, and
Sun
,
X.
,
2018
, “
Stall Inception Analysis of Transonic Compressors With Chordwise and Axial Sweep
,”
ASME J. Turbomach.
,
140
(
4
), p.
041009
.
19.
Xu
,
D.
,
He
,
C.
,
Sun
,
D.
, and
Sun
,
X.
,
2021
, “
Stall Inception Prediction of Axial Compressors With Radial Inlet Distortions
,”
Aerosp. Sci. Technol.
,
109
, p.
106433
.
20.
Fang
,
Y.
,
Sun
,
D.
,
Xu
,
D.
,
He
,
C.
, and
Sun
,
X.
,
2023
, “
Rapid Prediction of Compressor Rotating Stall Inception Using Arnoldi Eigenvalue Algorithm
,”
AIAA J.
,
61
(
8
), pp.
3566
3578
.
21.
Tam
,
C. K.
, and
Webb
,
J. C.
,
1993
, “
Dispersion-Relation-Preserving Finite Difference Schemes for Computational Acoustics
,”
J. Comput. Phys.
,
107
(
2
), pp.
262
281
.
22.
Marquet
,
O.
,
Sipp
,
D.
, and
Jacquin
,
L.
,
2008
, “
Sensitivity Analysis and Passive Control of Cylinder Flow
,”
J. Fluid Mech.
,
615
, pp.
221
252
.
23.
Chomaz
,
J. M.
,
2005
, “
Global Instabilities in Spatially Developing Flows: Non-Normality and Nonlinearity
,”
Annu. Rev. Fluid Mech.
,
37
(
1
), pp.
357
392
.
24.
Chen
,
G. T.
,
Greitzer
,
E. M.
,
Tan
,
C. S.
, and
Marble
,
F. E.
,
1991
, “
Similarity Analysis of Compressor tip Clearance Flow Structure
,”
ASME Journal of Turbomachinery
,
113
(
2
), pp.
260
269
.
25.
Yamada
,
K.
,
Kikuta
,
H.
,
Iwakiri
,
K.
,
Furukawa
,
M.
, and
Gunjishima
,
S.
,
2012
, “
An Explanation for Flow Features of Spike-Type Stall Inception in an Axial Compressor Rotor
,”
ASME J. Turbomach.
,
135
(
2
), p.
021023
.
26.
Vo
,
H. D.
,
Tan
,
C. S.
, and
Greitzer
,
E. M.
,
2008
, “
Criteria for Spike Initiated Rotating Stall
,”
ASME J. Turbomach.
,
130
(
1
), p.
011023
.
You do not currently have access to this content.