Graphical Abstract Figure

Integral curve of the vector field corresponding to the sum of pseudotime-time and time derivatives

Graphical Abstract Figure

Integral curve of the vector field corresponding to the sum of pseudotime-time and time derivatives

Close modal

Abstract

The aim of this paper is to study approaches to implement implicit pseudotime marching for the harmonic balance system in the frequency domain. We first give a motivation for using pseudotime marching as a solution technique. It turns out that, when the discretization errors of the pseudospectral time-derivative and the pseudotime derivative are neglected, the harmonic balance solution converges to a stable periodic flow, provided that the initial solution is sufficiently close to a stable periodic solution. This motivates the choice of a robust pseudotime marching approach, e.g., an implicit solver based on backward Euler integration. This approach requires the Jacobian of the harmonic balance residual. As for the steady problem, the Jacobian can be approximated without changing the final solution as long as the solver converges. Therefore, a central question is which simplifications are appropriate in terms of the overall efficiency and robustness of the solver. As has been shown in the literature, the spectral time-derivative operator should be taken into account in the implicit system. On the other hand, the linearization of the flow residual can be simplified to a certain extent, especially if the system is solved in the frequency domain. In this paper, we show that, up to terms which scale with the amplitude of the disturbances, the linear system matrix is the sum of a scalar diagonal and a block diagonal matrix with identical blocks for each harmonic. The deviation from this structure is due to to the nonlinearity of the unsteady flow problem. We show that when the unsteadiness is small, the nonlinear coupling terms can be neglected in the implicit solver and the resulting special matrix structure can be exploited to massively speed up the solver. In contrast, when a strong disturbance is simulated, this simplification can lead to significant losses in robustness. To illustrate our findings, we apply the implemented methods to predict the flow response to a disturbance prescribed at the inlet of a transonic compressor. When the disturbance amplitude is increased, a strong oscillation is induced, and the harmonic balance solver converges only when the nonlinear coupling between the harmonics is taken into account.

References

1.
Hall
,
K. C.
,
Thomas
,
J. P.
, and
Clark
,
W. S.
,
2002
, “
Computation of Unsteady Nonlinear Flows in Cascades Using a Harmonic Balance Technique
,”
AIAA J.
,
40
(
5
), pp.
879
886
.
2.
Gilmore
,
R. J.
, and
Steer
,
M. B.
,
1991
, “
Nonlinear Circuit Analysis Using the Method of Harmonic Balance – A Review of the Art. Part I. Introductory Concepts
,”
Int. J. Microwave Millimeter-Wave Computer-Aided Eng.
,
1
(
1
), pp.
22
37
.
3.
Gilmore
,
R. J.
, and
Steer
,
M. B.
,
1991
, “
Nonlinear Circuit Analysis Using the Method of Harmonic Balance – A Review of the Art. II. Advanced Concepts
,”
Int. J. Microwave Millimeter-Wave Computer-Aided Eng.
,
1
(
2
), pp.
159
180
.
4.
Krack
,
M.
, and
Gross
,
J.
,
2019
,
Harmonic Balance for Nonlinear Vibration Problems
,
Mathematical Engineering, Springer International Publishing
,
Cham, Switzerland
.
5.
Woodgate
,
M. A.
, and
Badcock
,
K. J.
,
2009
, “
Implicit Harmonic Balance Solver for Transonic Flow With Forced Motions
,”
AIAA J.
,
47
(
4
), pp.
893
901
.
6.
Su
,
X.
, and
Yuan
,
X.
,
2010
, “
Implicit Solution of Time Spectral Method for Periodic Unsteady Flows
,”
Int. J. Numerical Methods Fluids
,
63
(
7
), pp.
860
876
.
7.
Sicot
,
F.
,
Dufour
,
G.
, and
Gourdain
,
N.
,
2012
, “
A Time-Domain Harmonic Balance Method for Rotor/Stator Interactions
,”
ASME J. Turbomach.
,
134
(
1
), p.
011001
.
8.
Thomas
,
J. P.
,
Custer
,
C. H.
,
Dowell
,
E. H.
,
Hall
,
K. C.
, and
Corre
,
C.
,
2013
, “
Compact Implementation Strategy for a Harmonic Balance Method Within Implicit Flow Solvers
,”
AIAA J.
,
51
(
6
), pp.
1374
1381
.
9.
Frey
,
C.
,
Ashcroft
,
G.
,
Kersken
,
H.-P.
, and
Voigt
,
C.
,
2014,
, “
A Harmonic Balance Technique for Multistage Turbomachinery Applications
,” ASME Turbo Expo 2014: Turbine Technical Conference and Exposition, Vol.
45615
, p.
V02BT39A005
.
10.
Gövert
,
S.
,
Lipkowicz
,
J. T.
, and
Janus
,
B.
,
2024
, “
Compressible Large Eddy Simulation of Thermoacoustic Instabilities in the PRECCINSTA Combustor Using Flamelet Generated Manifolds With Dynamic Thickened Flame Model
,”
ASME J. Eng. Gas Turbines Power
,
146
(
1
), p.
011011
.
11.
Engels-Putzka
,
A.
,
Backhaus
,
J.
, and
Frey
,
C.
,
2019
, “
Forced Response Sensitivity Analysis Using an Adjoint Harmonic Balance Solver
,”
ASME J. Turbomach.
,
141
(
3
), p.
031014
.
12.
Bergmann
,
M.
,
Morsbach
,
C.
,
Klose
,
B. F.
,
Ashcroft
,
G.
, and
Kügeler
,
E.
,
2024
, “
A Numerical Test Rig for Turbomachinery Flows Based on Large Eddy Simulations With a High-Order Discontinuous Galerkin Scheme–Part I: Sliding Interfaces and Unsteady Row Interactions
,”
ASME J. Turbomach.
,
146
(
2
), p.
021005
.
13.
Roe
,
P. L.
,
1981
, “
Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes
,”
J. Comput. Phys.
,
43
(
2
), pp.
357
372
.
14.
van Leer
,
B.
,
1979
, “
Towards the Ultimate Conservative Difference Scheme. V. A Second-Order Sequel to Godunov’s Method
,”
J. Comput. Phys.
,
32
(
1
), pp.
101
136
.
15.
van Albada
,
G. D.
,
van Leer
,
B.
, and
Roberts Jr
,
W. W.
,
1982
, “
A Comparative Study of Computational Methods in Cosmic Gas Dynamics
,”
Astron. Astrophys.
,
108
(
1
), pp.
76
84
.
16.
Wilcox
,
D. C.
,
1988
, “
Reassessment of the Scale-Determining Equation for Advanced Turbulence Models
,”
AIAA J.
,
26
(
11
), pp.
1299
1310
.
17.
Kato
,
M.
, and
Launder
,
B. E.
,
1993
, “
The Modeling of Turbulent Flow Around Stationary and Vibrating Square Cylinders
,”
9th Symposium on Turbulent Shear Flows
,
Kyoto, Japan
,
Aug. 16–18
, pp.
1
6
.
18.
Orszag
,
S. A.
,
1971
, “
Elimination of Aliasing in Finite-Difference Schemes by Filtering High-Wavenumber Components
,”
J. Atmos. Sci.
,
28
(
6
), p.
1074
.
19.
Frey
,
C.
,
Ashcroft
,
G.
,
Kersken
,
H.-P.
,
Schönweitz
,
D.
, and
Mennicken
,
M.
,
2018
, “
Simulation of Indexing and Clocking With Harmonic Balance
,”
Int. J. Turbomach. Propuls. Power
,
3
(
1
), p.
1
.
20.
Junge
,
L.
,
Frey
,
C.
,
Ashcroft
,
G.
, and
Kuegeler
,
E.
,
2021
, “
A New Harmonic Balance Approach Using Multidimensional Time
,”
ASME J. Eng. Gas Turbines Power
,
143
(
8
), p.
081007
.
21.
Frey
,
C.
,
Ashcroft
,
G.
, and
Kersken
,
H.-P.
,
2015,
, “
Simulations of Unsteady Blade Row Interactions Using Linear and Non-Linear Frequency Domain Methods
,”
ASME Turbo Expo 2015: Turbine Technical Conference and Exposition, Vol. 2B: Turbomachinery
,
Montreal, Quebec, Canada
,
June 15–19
, p.
V02BT39A037
.
22.
Schlüß
,
D.
, and
Frey
,
C.
,
2019,
, “
Time Domain Implementation of a Spectral Non-Reflecting Boundary Condition for Unsteady Turbomachinery Flows
,”
24th ISABE Conference
,
Canberra, Australia
,
Sept. 22–27
.
23.
Frey
,
C.
,
Schlüß
,
D.
,
Wolfrum
,
N.
,
Bechlars
,
P.
, and
Beck
,
M.
,
2020,
, “
On the Formulation of Nonreflecting Boundary Conditions for Turbomachinery Configurations: Part I—Theory and Implementation
,”
ASME Turbo Expo, Vol. 2C
,
Virtual Conference
,
Sept. 21–25
.
24.
Li
,
H. D.
, and
He
,
L.
,
2002
, “
Single-Passage Analysis of Unsteady Flows Around Vibrating Blades of a Transonic Fan Under Inlet Distortion
,”
ASME J. Turbomach.
,
124
(
2
), pp.
285
292
.
25.
Leung
,
A. Y. T.
, and
Ge
,
T.
,
1995
, “
Toeplitz Jacobian Matrix for Nonlinear Periodic Vibration
,”
ASME J. Appl. Mech.
,
62
(
3
), pp.
709
717
.
26.
Krzikalla
,
O.
,
Rempke
,
A.
,
Bleh
,
A.
,
Wagner
,
M.
, and
Gerhold
,
T.
,
2021,
, “
Spliss: A Sparse Linear System Solver for Transparent Integration of Emerging Hpc Technologies Into CFD Solvers and Applications
,” STAB/DGLR Symposium 2020: New Results in Numerical and Experimental Fluid Mechanics XIII,
A.
Dillmann
,
G.
Heller
,
E.
Krämer
, and
C.
Wagner
, eds.,
Springer International Publishing
,
Cham, Switzerland
, pp.
635
645
.
27.
Mohnke
,
J.
, and
Wagner
,
M.
,
2023
, “
A Look at Performance and Scalability of the GPU Accelerated Sparse Linear System Solver Spliss
,”
29th International Conference on Parallel and Distributed Computing
,
Limassol, Cyprus
,
Aug. 28–Sept. 1
, pp.
637
648
.
28.
Kühn
,
M. J.
,
Holke
,
J.
,
Lutz
,
A.
,
Thies
,
J.
,
Röhrig-Zöllner
,
M.
,
Bleh
,
A.
,
Backhaus
,
J.
, and
Basermann
,
A.
,
2023
, “
SIMD Vectorization for Simultaneous Solution of Locally Varying Linear Systems With Multiple Right-Hand Sides
,”
J. Supercomput.
,
79
(
13
), pp.
14684
14706
.
29.
Kilian
,
N.
,
Klausmann
,
F.
,
Franke
,
D.
,
Schiffer
,
H.-P.
, and
Gutiérrez Salas
,
M.
,
2022,
, “
Numerical Investigation of Forced Response in a Transonic Compressor Stage – Highlighting Challenges Using Experimental Validation
,”
16th International Symposium on Unsteady Aerodynamics Aeroacoustics and Aeroelasticity of Turbomachines (ISUAAAT)
,
Madrid, Spain
,
Sept. 19–23
.
30.
Bakhtiari
,
F.
,
Wartzek
,
F.
,
Leichtfuß
,
S.
,
Schiffer
,
H.-P.
,
Goinis
,
G.
, and
Nicke
,
E.
,
2015
, “
Design and Optimization of a New Stator for the Transonic Compressor Rig at TU Darmstadt
,”
Deutscher Luft- und Raumfahrtkongress 2015
,
Rostock, Germany
,
Sept. 22–24
.
31.
Schlüß
,
D.
,
Frey
,
C.
, and
Ashcroft
,
G.
,
2016
, “
Consistent Non-Reflecting Boundary Conditions for Both Steady and Unsteady Flow Simulations in Turbomachinery Applications
,”
ECCOMAS Congress 2016 VII European Congress on Computational Methods in Applied Sciences and Engineering
,
Crete, Greece
,
June 5–10
.
You do not currently have access to this content.