Abstract

This work presents procedures for implementing machine learning methods into existing algorithms for multihole probe calibration and data reduction. It demonstrates that using artificial neural networks (ANNs) can decrease the amount of calibration data needed to achieve a specific calibration uncertainty by over 50%, while also significantly reducing data reduction times. Instead of surface fitting methods, ANNs are employed. Initially, directional calibration coefficients related to flow angles are computed based on pressure measurements, and then these flow angles serve as input parameters for subsequent ANNs to iteratively define Mach number, static pressure, and total pressure. In an alternative approach, new calibration coefficients directly relate pressure measurements from the five-hole probe to the quantities of interest, thereby eliminating the need for iterative algorithms used in conventional surface fitting methods. This method offers several advantages: an average increase of less than 1% in calibration uncertainty for flow angles and a significant reduction in data reduction times to a few seconds on average. Additionally, the methodology is confirmed to avoid both overfitting and underfitting.

References

1.
Dudzinski
,
T.
, and
Krause
,
L. N.
,
1969
, “
Flow-Direction Measurements with Fixed-Position Probes
,” NASA Technical Memorandum X-1904, USA.
2.
Treaster
,
A. L.
, and
Yocum
,
A. M.
,
1978
, “
24th International Instrumentation Symposium
,”
The Calibration and Application of Five-Hole Probes
, pp.
255
266
.
3.
Zilliac
,
G. G.
,
1989
, “
Calibration of Seven-Hole Pressure Probes for Use in Fluid Flows with Large Angularity
,”
NASA Technical Memorandum 102200
, pp.
1
46
.
4.
Zilliac
,
G. G.
,
1993
, “
Modelling, Calibration, and Error Analysis of Seven-Hole Pressure Probes
,”
Exp. Fluids
,
14
(
1–2
), pp.
104
120
.
5.
Babu
,
C. V.
,
Govardhan
,
M.
, and
Sitaram
,
N.
,
1998
, “
A Method of Calibration of a Seven-Hole Pressure Probe for Measuring Highly Three-Dimensional Flows
,”
Meas. Sci. Technol.
,
9
(
3
), p.
468
.
6.
Pisasale
,
A. J.
, and
Ahmed
,
N. A.
,
2002
, “
A Novel Method for Extending the Calibration Range of Five-Hole Probe for Highly Three-Dimensional Flows
,”
Flow Measure. Instrum.
,
13
(
1–2
), pp.
23
30
.
7.
Gossweiler
,
C. R.
,
Kupferschmied
,
P.
, and
Gyarmathy
,
G.
,
1995
, “
On Fast-Response Probes: Part 1—Technology, Calibration, and Application to Turbomachinery
,”
ASME J. Turbomach.
,
117
(
4
), pp.
611
617
.
8.
Dominy
,
R. G.
, and
Hodson
,
H. P.
,
1992
, “An Investigation of Factors Influencing the Calibration of 5-Hole Probes for 3-d Flow Measurements,” Vol. 78934, American Society of Mechanical Engineers.
9.
Johansen
,
E. S.
,
Rediniotis
,
O. K.
, and
Jones
,
G.
,
2000
, “
The Compressible Calibration of Miniature Multi-hole Probes
,”
ASME J. Fluids Eng.
,
123
(
1
), pp.
128
138
.
10.
Rediniotis
,
O. K.
, and
Chrysanthakopoulos
,
G.
,
1998
, “
Application of Neural Networks and Fuzzy Logic to the Calibration of the Seven-Hole Probe
,”
ASME J. Fluids Eng.
,
120
(
1
), pp.
95
101
.
11.
Zeiger
,
M.
,
Chalmeta
,
L.
, and
Telionis
,
D.
,
1998
, “
Tip Geometry Effects on Calibration and Performance of Seven-Hole Probes
,” p.
2810
.”
12.
Schaub
,
U. W.
,
Sharp
,
C. R.
,
Bassett
,
R. W.
, and
Schaub
,
U. W.
,
1964
, “An Investigation of the Three-Dimensional-Flow Characteristics of a Non-Nulling Five-Tube Probe,” Tech. Report No. LR-393,
National Research Laboratories
,
Ottawa, Canada
.
13.
Wickens
,
R. H.
, and
Williams
,
C. D.
,
1985
, “Calibration and Use of Five-Hole Flow Direction Probes for Low Speed Wind Tunnel Application,” Tech. Report No. 24468,
National Research Council
,
Canada
.
14.
Morrison
,
G. L.
,
Schobeiri
,
M. T.
, and
Pappu
,
K. R.
,
1998
, “
Five-Hole Pressure Probe Analysis Technique
,”
Flow Measure. Instrument.
,
9
(
3
), pp.
153
158
.
15.
Bryer
,
D. W.
, and
Pankhurst
,
R. C.
,
1971
,
Pressure-Probe Methods for Determining Wind Speed and Flow Direction
,
Her Majesty’s Stationery Office
,
London, UK
.
16.
Gallington
,
G. G.
,
1980
, “Measurement of Very Large Flow Angles With Non-Nuling Seven-Hole Probes,” Aeronautics Digest, USAFA-TR-80-17, pp.
60
88
.
17.
Reichert
,
B. A.
, and
Wendt
,
B. J.
,
1994
, “
A new algorithm for five-hole probe calibration, data reduction, and uncertainty analysis
,”
NASA Technical Memorandum 106458
.
18.
Wenger
,
C. W.
, and
Devenport
,
W. J.
,
1999
, “
Seven-Hole Pressure Probe Calibration Method Utilizing Look-Up Error Tables
,”
AIAA J.
,
37
(
6
), pp.
675
679
.
19.
Milanovic
,
I. M.
, and
Kalkhoran
,
I. M.
,
2000
, “
Numerical Calibration of a Conical Five-Hole Probe for Supersonic Measurements
,”
Meas. Sci. Technol.
,
11
(
12
), p.
1812
.
20.
Sumner
,
D.
,
2002
, “
A Comparison of Data-Reduction Methods for a Seven-Hole Probe
,”
ASME J. Fluid. Eng.
,
124
(
2
), pp.
523
527
.
21.
Pisasale
,
A. J.
, and
Ahmed
,
N. A.
,
2002
, “
Theoretical Calibration for Highly Three-Dimensional Low-Speed Flows of a Five-Hole Probe
,”
Meas. Sci. Technol.
,
13
(
7
), p.
1100
.
22.
Yasa
,
T.
, and
Paniagua
,
G.
,
2012
, “
Robust Procedure for Multi-hole Probe Data Processing
,”
Flow Measure. Instrument.
,
26
(
1
), pp.
46
54
.
23.
Baskaran
,
S.
,
Ramachandran
,
N.
, and
Noever
,
D.
,
1999
, “
Probabilistic and Other Neural Nets in Multi-hole Probe Calibration and Flow Angularity Pattern Recognition
,”
Pattern Anal. Appl.
,
2
(
1
), pp.
92
98
.
24.
Soltani
,
M.
,
Sadati
,
N.
,
Masdari
,
M.
, and
Ghorbani
,
R.
,
2002
, “
Neural Network Based Calibration of a Seven-Hole Probe
,”
10th Iranian Conference on Electrical Engineering
,
Tehran, Iran
,
May
.
25.
Rediniotis
,
O. K.
, and
Vijayagopal
,
R.
,
1999
, “
Miniature Multihole Pressure Probes and Their Neural-Network-Based Calibration
,”
AIAA J.
,
37
(
6
), pp.
666
674
.
26.
Fan
,
H.-Y.
,
Lu
,
W.-z.
,
Xi
,
G.
, and
Wang
,
S.-j.
,
2003
, “
An Improved Neural-Network-Based Calibration Method for Aerodynamic Pressure Probes
,”
ASME J. Fluids Eng.
,
125
(
1
), pp.
113
120
.
27.
Lee
,
H.-H.
,
Shinder
,
I. I.
,
Wright
,
J. D.
, and
Moldover
,
M. R.
,
2014
, “
Application of Anfis Method to the Non-nulling Calibration of Multi-hole Pitot Tube
,”
Procedia Eng.
,
79
(
1
), pp.
125
132
.
28.
Gonsalez
,
J. C.
, and
Arrington
,
E. A.
,
1996
, “
Five-Hole Flow Angle Probe Calibration for the NASA Glenn Icing Research Tunnel
,”
19th Advanced Measurement and Ground Testing Technology Conference
,
New Orleans, LA
.
29.
Doğan
,
G.
, and
Ergen
,
B.
,
2024
, “
A New Hybrid Mobile Cnn Approach for Crosswalk Recognition in Autonomous Vehicles
,”
Multi. Tools Appl.
,
83
, pp.
67747
67762
.
30.
Kingma
,
D. P.
, and
Ba
,
J.
,
2014
, “
Adam: A Method for Stochastic Optimization
,”
arXiv:1412.6980
.
31.
Schwarz
,
G.
,
1978
, “
Estimating the Dimension of a Model
,”
Ann. Stat.
,
6
(
2
), pp.
461
464
.
32.
Raftery
,
A. E.
,
1995
, “
Bayesian Model Selection in Social Research
,”
Soc. Methodol.
,
25
(
1
), pp.
111
164
.
33.
Wasserman
,
L.
,
2000
, “
Bayesian Model Selection and Model Averaging
,”
J. Math. Psychol.
,
44
(
1
), pp.
92
107
.
34.
Beck
,
J. L.
, and
Yuen
,
K. -V.
,
2004
, “
Model Selection Using Response Measurements: Bayesian Probabilistic Approach
,”
J. Eng. Mech.
,
130
(
2
), pp.
192
203
.
35.
Spiegelhalter
,
D. J.
,
Best
,
N. G.
,
Carlin
,
B. P.
, and
Van Der Linde
,
A.
,
2002
, “
Bayesian Measures of Model Complexity and Fit
,”
J. R. Stat. Soc.: Series b (Stat. Methodol.)
,
64
(
4
), pp.
583
639
.
36.
Congdon
,
P.
,
2007
,
Bayesian Statistical Modelling
, 2nd ed.,
John Wiley & Sons
,
West Sussex, UK
.
37.
MacKay
,
D. J. C.
,
1995
, “
Probable Networks and Plausible Predictions–a Review of Practical Bayesian Methods for Supervised Neural Networks
,”
Netw.: Comput. Neural Syst.
,
6
(
3
), pp.
469
505
.
38.
Crawford
,
J.
,
2011
, “Design and Calibration of Seven Hole Probes for Flow Measurement.”
You do not currently have access to this content.