Abstract

The ever-increasing combustor exit temperature in modern turbine engine designs raises cooling challenges for the nozzle guide vane (NGV). Due to the complexity of NGV cooling design, the cooling effect from the upstream combustor cooling features can prove valuable. This study investigates, experimentally and numerically, the cooling effect of a louver cooling scheme near the combustor exit on the NGV endwall. Wind tunnel testing and computational fluid dynamics simulation are carried out with engine-representative conditions of an exit Mach number of 0.85, an exit Reynolds number of 1.5 × 106, an inlet turbulence intensity of 16%, and a density ratio of 2.1. Various coolant mass flow ratios from 1% to 4% are tested to demonstrate the effect of the coolant rate. For the geometry studied, the results found a critical mass flow ratio between 1% and 2%. When exceeding this rate, the coolant forms a uniform film, providing satisfactory coverage upstream of the NGV passage inlet. For the cooling of the NGV passage, the mass flow ratio of the range investigated is insufficient for desirable cooling performance. The pressure side endwall proves the most difficult for the coolant to reach. In addition, the fishmouth cavity at the combustor–NGV interface causes a three-dimensional cavity vortex that transports the coolant in the pitch-wise direction. The coolant transport pattern is dependent on the coolant mass flow ratio. Based on the results, the authors propose combining this louver scheme with the upstream jump cooling scheme for a desirable NGV cooling system.

References

1.
Han
,
J. C.
,
Dutta
,
S.
, and
Ekkad
,
S.
,
2012
,
Gas Turbine Heat Transfer and Cooling Technology
,
CRC Press
,
Boca Raton, FL
.
2.
Burd
,
S. W.
,
Satterness
,
C. J.
, and
Simon
,
T. W.
,
2000
, “
Effects of Slot Bleed Injection Over a Contoured End Wall on Nozzle Guide Vane Cooling Performance: Part II—Thermal Measurements
,”
Proceedings of ASME Turbo Expo 2000
,
Munich, Germany
, p.
V003T01A007
.
3.
Oke
,
R. A.
, and
Simon
,
T. W.
,
2002
, “
Film Cooling Experiments With Flow Introduced Upstream of a First Stage Nozzle Guide Vane Through Slots of Various Geometries
,”
Proceedings of ASME Turbo Expo 2002
,
Amsterdam, The Netherlands
,
June 3–6
, pp.
33
40
.
4.
Bogard
,
D. G.
, and
Thole
,
K. A.
,
2006
, “
Gas Turbine Film Cooling
,”
J. Propul. Power
,
22
(
2
), pp.
249
270
.
5.
Bunker
,
R. S.
,
2007
, “
Gas Turbine Heat Transfer: Ten Remaining Hot Gas Path Challenges
,”
ASME J. Turbomach.
,
129
(
2
), pp.
193
201
.
6.
Mao
,
S.
,
Sibold
,
R.
,
Ng
,
W. F.
,
Li
,
Z.
,
Bai
,
B.
,
Xu
,
H.
, and
Fox
,
M.
,
2022
, “
Experimental Study of the Endwall Heat Transfer of a Transonic Nozzle Guide Vane With Upstream Jet Purge Cooling Part 1—Effect of Density Ratio
,”
ASME J. Turbomach.
,
144
(
5
), p.
051003
.
7.
El-Gabry
,
L.
,
Xu
,
H.
,
Liu
,
K.
,
Chang
,
J.
, and
Fox
,
M.
,
2018
, “
Effect of Coolant Injection Angle on Nozzle Endwall Film Cooling: Experimental and Numerical Analysis in Linear Cascade
,”
Proceedings of ASME Turbo Expo 2018
,
Oslo, Norway
,
June 11–15
.
8.
Thrift
,
A. A.
,
Thole
,
K. A.
, and
Hada
,
S.
,
2011
, “
Effects of an Axisymmetric Contoured Endwall on a Nozzle Guide Vane: Convective Heat Transfer Measurements
,”
ASME J. Turbomach.
,
133
(
4
), p.
041008
.
9.
Chowdhury
,
N. H.
,
Shiau
,
C. C.
,
Han
,
J. C.
,
Zhang
,
L.
, and
Moon
,
H. K.
,
2017
, “
Turbine Vane Endwall Film Cooling With Slashface Leakage and Discrete Hole Configuration
,”
ASME J. Turbomach.
,
139
(
6
), pp.
061003
.
10.
Sieverding
,
C. H.
,
1985
, “
Recent Progress in the Understanding of Basic Aspects of Secondary Flows in Turbine Blade Passages
,”
ASME J. Eng. Gas Turbines Power
,
107
(
2
), pp.
248
257
.
11.
Sharma
,
O. P.
, and
Butler
,
T. L.
,
1987
, “
Predictions of Endwall Losses and Secondary Flows in Axial Flow Turbine Cascades
,”
ASME J. Turbomach.
,
109
(
2
), pp.
229
236
.
12.
Goldstein
,
R. J.
, and
Spores
,
R. A.
,
1988
, “
Turbulent Transport on the Endwall in the Region Between Adjacent Turbine Blades
,”
ASME J. Heat Transfer-Trans. ASME
,
110
(
4a
), pp.
862
869
.
13.
Wang
,
H. P.
,
Olson
,
S. J.
,
Goldstein
,
R. J.
, and
Eckert
,
E. R. G.
,
1997
, “
Flow Visualization in a Linear Turbine Cascade of High Performance Turbine Blades
,”
ASME J. Turbomach.
,
119
(
1
), pp.
1
8
.
14.
Biesinger
,
T. E.
, and
Gregory-Smith
,
D. G.
,
1993
, “
Reduction in Secondary Flows and Losses in a Turbine Cascade by Upstream Boundary Layer Blowing
,”
Proceedings of ASME Turbo Expo 1993
,
Cincinnati, OH
,
May 24–27
.
15.
Colban
,
W. F.
,
Thole
,
K. A.
, and
Zess
,
G.
,
2003
, “
Combustor Turbine Interface Studies—Part 1: Endwall Effectiveness Measurements
,”
ASME J. Turbomach.
,
125
(
2
), pp.
193
202
.
16.
Holgate
,
N. E.
,
Ireland
,
P. T.
, and
Romero
,
E.
,
2019
, “
The Effects of Combustor Cooling Features on Nozzle Guide Vane Film Cooling Experiments
,”
ASME J. Turbomach.
,
141
(
1
), p.
011005
.
17.
Ling
,
J. C.
,
Ireland
,
P. T.
, and
Tumer
,
L.
,
2002
, “
Full Coverage Film Cooling for Combustor Transition Sections
,”
Proceedings of ASME Turbo Expo 2002
,
Amsterdam, The Netherlands
,
June 3–6
, pp.
1011
1021
.
18.
Li
,
L.
,
Peng
,
X. F.
, and
Liu
,
T.
,
2006
, “
Combustion and Cooling Performance in an Aero-Engine Annular Combustor
,”
Appl. Therm. Eng.
,
26
(
16
), pp.
1771
1779
.
19.
Scrittore
,
J. J.
,
Thole
,
K. A.
, and
Burd
,
S. W.
,
2005
, “
Experimental Characterization of Film-Cooling Effectiveness Near Combustor Dilution Holes
,”
Proceedings of ASME Turbo Expo 2005
,
Reno-Tahoe, NV
,
June 6–9
, pp.
1339
1347
.
20.
Ceccherini
,
A.
,
Facchini
,
B.
,
Tarchi
,
L.
,
Toni
,
L.
, and
Coutandin
,
D.
,
2009
, “
Combined Effect of Slot Injection, Effusion Array and Dilution Hole on the Cooling Performance of a Real Combustor Liner
,”
Proceedings of ASME Turbo Expo 2009
,
Orlando, FL
,
June 8–12
, pp.
1431
1440
.
21.
Facchini
,
B.
,
Maiuolo
,
F.
,
Tarchi
,
L.
, and
Coutandin
,
D.
,
2010
, “
Combined Effect of Slot Injection, Effusion Array and Dilution Hole on the Heat Transfer Coefficient of a Real Combustor Liner: Part 1—Experimental Analysis
,”
Proceedings of ASME Turbo Expo 2010
,
Glasgow, UK
,
June 14–18
, pp.
753
762
.
22.
Immarigeon
,
A.
, and
Hassan
,
I.
,
2006
, “
An Advanced Impingement/Film Cooling Scheme for Gas Turbines–Numerical Study
,”
Int. J. Numer. Methods Heat Fluid Flow
,
16
(
4
), pp.
470
493
.
23.
Ghorab
,
M. G.
,
2011
, “
Film Cooling Effectiveness and Net Heat Flux Reduction of Advanced Cooling Schemes Using Thermochromic Liquid Crystal
,”
Appl. Therm. Eng.
,
31
(
1
), pp.
77
92
.
24.
Elnady
,
T.
,
Saleh
,
W.
,
Hassan
,
I.
,
Kadem
,
L.
, and
Lucas
,
T.
,
2010
, “
Experimental Investigation of Louver Cooling Scheme on Gas Turbine Vane Pressure Side
,”
Proceedings of 14th International Heat Transfer Conference
,
Washington, DC
,
Aug. 8–13
, pp.
159
167
.
25.
Nix
,
A. C.
,
Smith
,
A. C.
,
Diller
,
T. E.
,
Ng
,
W. F.
, and
Thole
,
K. A.
,
2002
, “
High Intensity, Large Length-Scale Freestream Turbulence Generation in a Transonic Cascade
,”
Proceedings of ASME Turbo Expo 2002
,
Amsterdam, The Netherlands
,
June 3–6
, pp.
961
968
.
26.
Cook
,
W. J.
, and
Felderman
,
E. J.
,
1966
, “
Reduction of Data From Thin-Film Heat-Transfer Gauges: A Concise Numerical Technique
,”
AIAA J.
,
4
(
3
), pp.
561
562
.
27.
Xue
,
S.
,
Roy
,
A.
,
Ng
,
W. F.
, and
Ekkad
,
S. V.
,
2015
, “
A Novel Transient Technique to Determine Recovery Temperature, Heat Transfer Coefficient, and Film Cooling Effectiveness Simultaneously in a Transonic Turbine Cascade
,”
ASME J. Therm. Sci. Eng. Appl.
,
7
(
1
), p.
011016
.
28.
Mick
,
W. J.
, and
Mayle
,
R. E.
,
1988
, “
Stagnation Film Cooling and Heat Transfer, Including Its Effect Within the Hole Pattern
,”
ASME J. Turbomach.
,
110
(
1
), pp.
66
72
.
29.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
,
1
(
1
), pp.
3
17
.
30.
Li
,
Z.
,
Liu
,
L.
,
Li
,
J.
,
Sibold
,
R. A.
,
Ng
,
W. F.
,
Xu
,
H.
, and
Fox
,
M.
,
2018
, “
Effects of Upstream Step Geometry on Axisymmetric Converging Vane Endwall Secondary Flow and Heat Transfer at Transonic Conditions
,”
ASME J. Turbomach.
,
140
(
12
), p.
121008
.
31.
Liu
,
Y.
,
Yan
,
H.
, and
Lu
,
L.
,
2016
, “
Numerical Study of the Effect of Secondary Vortex on Three-Dimensional Corner Separation in a Compressor Cascade
,”
Int. J. Turbo Jet Eng.
,
33
(
1
), pp.
9
18
.
32.
Alqefl
,
M. H.
,
Nawathe
,
K. P.
,
Chen
,
P.
,
Zhu
,
R.
,
Kim
,
Y. W.
, and
Simon
,
T. W.
,
2021
, “
Aero-Thermal Aspects of Film Cooled Nozzle Guide Vane Endwalls: Part 2—Thermal Measurements
,”
ASME J. Turbomach.
,
143
(
12
), p.
121010
.
33.
Mao
,
S.
,
Sibold
,
R.
,
Ng
,
W. F.
,
Li
,
Z.
,
Bai
,
B.
,
Xu
,
H.
, and
Fox
,
M.
,
2022
, “
Experimental Study of the Endwall Heat Transfer of a Transonic Nozzle Guide Vane With Upstream Jet Purge Cooling Part 2—Effect of Combustor-Nozzle Guide Vane Misalignment
,”
ASME J. Turbomach.
,
144
(
5
), p.
051004
.
You do not currently have access to this content.