Abstract

While the clearance gap between the turbine rotor tip and the outer case in a gas turbine engine is necessary for the operation of the machine, the gap is kept as small as possible due to the detrimental effect of the flow over the turbine tip. With the increased investments in ultra-high-bypass ratio gas turbines, blade tip clearances are increasing in relative size to the turbine rotor, as engines move toward smaller core sizes. In this work, a constrained topology optimization of a rotor tip seal with discrete axisymmetric grooves was explored computationally using Reynolds-averaged Navier–Stokes simulations. The differential-evolution-based optimization was applied at two tip clearances representing a nominal and small-core scaled geometry. Furthermore, optimizations were performed at each tip clearance for blade designs with flat and squealer tips. The multi-objective optimization was designed to simultaneously maximize rotor efficiency and minimize rotor tip heat load. Several tip seal designs were identified for each tip geometry and tip gap that both increased aerodynamic efficiency and reduced the total heat load into the rotor tip. However, some optimal tip seal designs were composed of grooves that were demonstrated to be detrimental in prior work. Furthermore, grooves were more effective at increasing aerodynamic efficiency when applied to flat tipped geometries—increasing the estimated rotor efficiency by up to 0.9 points over the ungrooved seal baseline with flat tipped blades, as opposed to 0.25 points of improvement over the ungrooved case with squealer-tipped blades. Finally, for both tip configurations, optimal seal geometries that were obtained from the small-core scaled clearance gap optimizations generally maintained near optimal performance when evaluated at the design tip clearance, while those geometries developed at the design clearance experienced greater sensitivity to clearance gap changes.

References

1.
Braver
,
B.
,
Rutherford
,
D.
, and
Zheng
,
S.
,
2020
, “CO2 Emissions From Commercial Aviation: 2013, 2018, and 2019,” ICCT Report, Oct. 8.
2.
Lakshminarayana
,
B.
,
1970
, “
Methods of Predicting the Tip Clearance Effects in Axial Flow Turbomachinery
,”
ASME J. Basic Eng.
,
92
(
3
), pp.
467
480
.
3.
Bindon
,
J. P.
,
1989
, “
The Measurement and Formation of Tip Clearance Loss
,”
ASME J. Turbomach.
,
111
(
7
), pp.
257
263
.
4.
Farokhi
,
S.
,
1988
, “
Analysis of Rotor Tip Clearance Loss in Axial-Flow Turbines
,”
J. Propuls. Power
,
4
(
5
), pp.
453
457
.
5.
Ameri
,
A. A.
,
Steinthorsson
,
E.
, and
Rigby
,
D. L.
,
1999
, “
Effects of Tip Clearance and Casing Recess on Heat Transfer and Stage Efficiency in Axial Turbines
,”
ASME J. Turbomach.
,
121
(
10
), pp.
683
693
.
6.
Timko
,
L. P.
,
1984
, “Energy Efficient Engine High Pressure Turbine Component Test Performance Report,” NASA Report No. CR 168289.
7.
Azad
,
G. S.
,
Han
,
J. C.
,
Teng
,
S.
, and
Boyle
,
R. J.
,
2000
, “
Heat Transfer and Pressure Distributions on a Gas Turbine Blade Tip
,”
ASME J. Turbomach.
,
122
(
10
), pp.
717
724
.
8.
Banks
,
W. V.
,
Ameri
,
A. A.
,
Bons
,
J. P.
, and
Boyle
,
R. J.
,
2018
, “
Numerical Investigation of Effects of Tip Clearance in Shrouded Turbine Rotor Blade Performance
,”
Proceedings of the AIAA Propulsion and Energy Forum
,
Cincinnati, OH
,
July 9–11
, AIAA Paper No. 2018 4437.
9.
Boyle
,
R. J.
,
Agricola
,
L. M.
,
Parikh
,
A. H.
,
Ameri
,
A. A.
, and
Nagpal
,
V. K.
,
2018
, “
Shrouded CMC Rotor Blades for High Pressure Turbine Applications
,”
Proceedings of the ASME Turbo Expo
,
Oslo
,
June 11–15
, ASME Paper No. GT2018-76827.
10.
Ameri
,
A. A.
,
Steinthorsson
,
E.
, and
Rigby
,
D. L.
,
1998
, “
Effect of Squealer Tip on Rotor Heat Transfer and Efficiency
,”
ASME J. Turbomach.
,
121
(
10
), pp.
753
759
.
11.
Camci
,
C.
,
Dey
,
D.
, and
Kavurmacioglu
,
L.
,
2005
, “
Aerodynamics of Tip Leakage Flows Near Partial Squealer Rims in an Axial Flow Turbine Stage
,”
ASME J. Turbomach.
,
127
(
1
), pp.
14
24
.
12.
Key
,
N. L.
, and
Arts
,
T.
,
2006
, “
Comparison of Turbine Tip Leakage Flow for Flat Tip and Squealer Tip Geometries at High-Speed Conditions
,”
ASME J. Turbomach.
,
128
(
4
), pp.
213
220
.
13.
Maral
,
H.
,
Senel
,
C. B.
, and
Kavurmacioğlu
,
L.
,
2016
, “
A Parametric and Computational Aerothermal Investigation of Squealer Tip Geometry in an Axial Turbine: A Parametric Approach Suitable for Future Advanced Tip Carving Optimizations
,”
Proceedings of the ASME Turbo Expo
,
Seoul, South Korea
,
June 13–17
, ASME Paper No. GT2016-58107.
14.
Azad
,
G. S.
,
Han
,
J. C.
,
Bunker
,
R. S.
, and
Lee
,
C. P.
,
2002
, “
Effect of Squealer Geometry Arrangement on a Gas Turbine Blade Tip Heat Transfer
,”
ASME J. Turbomach.
,
124
(
6
), pp.
452
459
.
15.
De Maesschalck
,
C.
,
Lavagnoli
,
S.
,
Paniagua
,
G.
,
Verstraete
,
T.
,
Olive
,
R.
, and
Picot
,
P.
,
2016
, “
Heterogeneous Optimization Strategies for Carved and Squealer-Like Turbine Blade Tips
,”
ASME J. Turbomach.
,
138
(
12
), p.
121011
.
16.
Maral
,
H.
,
Alpman
,
E.
,
Kavurmacioğlu
,
L.
, and
Camci
,
C.
,
2019
, “
A Genetic Algorithm Based Aerothermal Optimization of Tip Carving for an Axial Turbine Blade
,”
Int. J. Heat Mass Transfer
,
143
(
11
), p.
118419
.
17.
Cernat
,
B. C.
,
Pátý
,
M.
,
De Maesschalck
,
C.
, and
Lavagnoli
,
S.
,
2019
, “
Experimental and Numerical Investigation of Optimized Blade Tip Shapes—Part I: Turbine Rainbow Rotor Testing and Numerical Methods
,”
ASME J. Turbomach.
,
141
(
1
), p.
011006
.
18.
Pátý
,
M.
,
Cernat
,
B. C.
,
De Maesschalck
,
C.
, and
Lavagnoli
,
S.
,
2019
, “
Experimental and Numerical Investigation of Optimized Blade Tip Shapes—Part II: Tip Flow Analysis and Loss Mechanisms
,”
ASME J. Turbomach.
,
141
(
1
), p.
011007
.
19.
Gao
,
J.
,
Zheng
,
Q.
, and
Yue
,
G.
,
2012
, “
Reduction of Tip Clearance Losses in an Unshrouded Turbine by Rotor-Casing Contouring
,”
J. Propuls. Power
,
28
(
5
), pp.
936
945
.
20.
Kavurmacioğlu
,
L. A.
,
Senel
,
C. B.
,
Maral
,
H.
, and
Camci
,
C.
,
2018
, “
Casing Grooves to Improve Aerodynamic Performance of a HP Turbine Blade
,”
Aerosp. Sci. Technol.
,
76
(
5
), pp.
194
203
.
21.
Wiese
,
C. J.
,
Berdanier
,
R. A.
, and
Thole
,
K. A.
,
2024
, “
Introduction of Axisymmetric Grooves as a Tip Seal Treatment for Small-Core Turbines
,”
Proceedings of the ASME Turbo Expo
,
London, UK
,
June 24–28
, ASME Paper No. GT2024-121398.
22.
Thole
,
K. A.
,
Barringer
,
M.
,
Berdanier
,
R. A.
,
Fishbone
,
S.
,
Wagner
,
J.
,
Dennis
,
R.
,
Black
,
J.
, et al
,
2021
, “
Defining a Testbed for the U.S. Turbine Industry: The National Experimental Turbine (NExT)
,”
AIAA Propulsion and Energy 2021 Forum
, AIAA Paper No. 2021-3489.
23.
Tien
,
L. M.
, “
CFD Predictions of the National Experimental Turbine Stage
,”
Ph.D. dissertation
,
The Pennsylvania State University
,
State College, PA
.
24.
Clark
,
J. P.
,
Polanka
,
M. D.
,
Meininger
,
M.
, and
Praisner
,
T. J.
,
2006
, “
Validation of Heat-Flux Predictions on the Outer Air Seal of a Transonic Turbine Blade
,”
ASME J. Turbomach.
,
128
(
7
), pp.
589
595
.
25.
Siemens Industries Digital Software
,
2021
, Simcenter STAR-CCM+, version 2021.3, Siemens Industries Digital Software, Plano, TX.
26.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.
27.
Berdanier
,
R. A.
,
Tien
,
L. M.
, and
Thole
,
K. A.
,
2024
, “
Comparing As-Built Additively Manufactured Turbine Airfoil Performance With Design-Intent Geometry
,”
Proceedings of the ASME Turbo Expo
,
London, UK
,
June 24–28
, ASME Paper No. GT2024 128894.
28.
Storn
,
R.
, and
Price
,
K.
,
1997
, “
Differential Evolution—A Simple and Efficient Heuristic for Global Optimization Over Continuous Spaces
,”
J. Global Optim.
,
11
(
4
), pp.
341
359
.
29.
Deb
,
K.
,
Pratap
,
A.
,
Agawal
,
S.
, and
Meyarivan
,
T.
,
2002
, “
A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II
,”
IEEE Trans. Evol. Comput.
,
6
(
2
), pp.
182
197
.
30.
Box
,
G. E. P.
,
Hunter
,
W. G.
, and
Hunter
,
J. S.
,
1978
,
Statistics for Experimenters
,
Wiley-Interscience
,
Hoboken, NJ
.
31.
Bogard
,
D. G.
, and
Thole
,
K. A.
,
2006
, “
Gas Turbine Film Cooling
,”
J. Propuls. Power
,
22
(
2
), pp.
250
270
.
32.
Han
,
J. C.
, and
Wright
,
L. M.
,
2006
,
Gas Turbine Handbook
,
R.
Dennis
, ed.,
Department of Energy, National Energy Technology Laboratory
,
Morgantown, WV
, pp.
321
352
.
33.
Bunker
,
R. S.
,
Dees
,
J. E.
, and
Palafox
,
P.
,
2014
, “Impingement Cooling in Gas Turbines: Design, Applications, and Limitations,”
Impingement Jet Cooling in Gas Turbines
,
R.
Amano
, and
B.
Sundén
, eds.,
WIT Press
,
Southampton
, pp.
1
28
.
34.
Rehani
,
M. R.
,
Alizadeh
,
M.
,
Fathi
,
A.
, and
Khaledi
,
H.
,
2013
, “
Turbine Blade Temperature Calculation and Life Estimation—A Sensitivity Analysis
,”
Propuls. Power Res.
,
2
(
2
), pp.
158
161
.
35.
Mattingly
,
J. D.
, and
Boyer
,
K. M.
,
2016
,
Elements of Propulsion
, 2nd ed.,
American Institute of Aeronautics and Astronautics
,
Reston, VA
.
You do not currently have access to this content.