Abstract

The aerodynamic penalties associated with the tip gap flow in axial turbines remain a challenging problem for turbine manufacturers. As modern gas turbines with small-core architectures are brought online, the influence of the tip gap continues to grow. While technologies to reduce the losses associated with the tip gap flow have been implemented into the blades themselves, little attention has been paid to the stationary tip seal, or casing, around the rotor wheel. In this study, an introduction to the use of axisymmetric groove enhancements for the casing of the rotor tip is examined computationally. These studies use the National Experimental Turbine (NExT) geometry, an engine-representative high-pressure turbine blade.

Steady, Reynolds-averaged Navier–Stokes simulations are used to assess the basic characteristics of axisymmetric grooves, such as depth, location, and arrangement. The objective of this introductory study was to determine the feasibility of impacting the tip leakage vortex formation and the associated losses in rotor efficiency. Furthermore, analyses were done with different tip gap heights along with both flat- and squealer-tipped blades. Tip seals with a single groove are demonstrated to improve rotor aerodynamic efficiency relative to ungrooved seals by up to 0.4 points when applied to flat-tipped rotor blades and up to 0.15 points with squealer tips. Alternating arrays of grooves show improvements for flat-tipped blade performance by up to 0.76 points while having a little additional aerodynamic effect on the squealer tip compared to the best single-groove designs. Finally, grooved tip seals appear to exert greater influence on the aerodynamic performance of the turbine rotor when at larger tip gaps, indicating that grooved tip seals alter the sensitivity of rotor performance to the tip gap.

References

1.
Braver
,
B.
,
Rutherford
,
D.
, and
Zheng
,
S.
,
2020
, “CO2 Emissions From Commercial Aviation: 2013, 2018, and 2019,” ICCT Report 8 October 2020.
2.
Lakshminarayana
,
B.
,
1970
, “
Methods of Predicting the Tip Clearance Effects in Axial Flow Turbomachinery
,”
ASME J. Basic Eng.
,
92
(
3
), pp.
467
480
.
3.
Timko
,
L. P.
,
1984
, “Energy Efficient Engine High Pressure Turbine Component Test Performance Report,” NASA Report No. CR-168289.
4.
Ameri
,
A. A.
,
Steinthorsson
,
E.
, and
Rigby
,
D. L.
,
1999
, “
Effects of Tip Clearance and Casing Recess on Heat Transfer and Stage Efficiency in Axial Turbines
,”
ASME J. Turbomach.
,
121
(
10
), pp.
683
693
.
5.
Farokhi
,
S.
,
1988
, “
Analysis of Rotor Tip Clearance Loss in Axial-Flow Turbines
,”
J. Propuls. Power
,
4
(
5
), pp.
453
457
.
6.
Denton
,
J. D.
,
1993
, “
Loss Mechanisms in Turbomachines
,”
ASME J. Turbomach.
,
115
(
10
), pp.
621
656
.
7.
Bindon
,
J. P.
,
1989
, “
The Measurement and Formation of Tip Clearance Loss
,”
ASME J. Turbomach.
,
111
(
7
), pp.
257
263
.
8.
Banks
,
W. V.
,
Ameri
,
A. A.
,
Bons
,
J. P.
, and
Boyle
,
R. J.
,
2018
, “
Numerical Investigation of Effects of Tip Clearance in Shrouded Turbine Rotor Blade Performance
,”
Proceedings of the AIAA Propulsion and Energy Forum
,
Cincinnati, OH
,
July 9–11
, AIAA Paper No. 2018-4437.
9.
Boyle
,
R. J.
,
Agricola
,
L. M.
,
Parikh
,
A. H.
,
Ameri
,
A. A.
, and
Nagpal
,
V. K.
,
2018
, “
Shrouded CMC Rotor Blades for High Pressure Turbine Applications
,”
Proceedings of the ASME Turbo Expo
,
Oslo, Norway
,
June 11–15
, ASME Paper No. GT2018-76827.
10.
O’Dowd
,
D. O.
,
Zhang
,
Q.
,
He
,
L.
,
Cheong
,
B. C. Y.
, and
Tibbot
,
I.
,
2013
, “
Aerothermal Performance of a Cooled Winglet at Engine Representative Mach and Reynolds Numbers
,”
ASME J. Turbomach.
,
135
(
1
), p.
011041
.
11.
Schabowski
,
Z.
,
Hodson
,
H.
,
Giacche
,
D.
,
Power
,
B.
, and
Stokes
,
M. R.
,
2014
, “
Aeromechanical Optimization of a Winglet-Squealer Tip for an Axial Turbine
,”
ASME J. Turbomach.
,
136
(
7
), p.
071004
.
12.
Heyes
,
F. J. G.
,
Hodson
,
H. P.
, and
Dailey
,
G. M.
,
1992
, “
The Effect of Blade Tip Geometry on the Tip Leakage Flow in Axial Turbine Cascades
,”
ASME J. Turbomach.
,
114
(
7
), pp.
643
651
.
13.
Ameri
,
A. A.
,
Steinthorsson
,
E.
, and
Rigby
,
D. L.
,
1998
, “
Effect of Squealer Tip on Heat Transfer and Efficiency
,”
ASME J. Turbomach.
,
120
(
10
), pp.
753
759
.
14.
Camci
,
C.
,
Dey
,
D.
, and
Kavurmacioğlu
,
L.
,
2005
, “
Aerodynamics of Tip Leakage Flows Near Partial Squealer Rims in an Axial Flow Turbine Stage
,”
ASME J. Turbomach.
,
127
(
1
), pp.
14
24
.
15.
Maral
,
H.
,
Senel
,
C. B.
, and
Kavurmacioğlu
,
L.
,
2016
, “
A Parametric and Computational Aerothermal Investigation of Squealer Tip Geometry in an Axial Turbine: A Parametric Approach Suitable for Future Advanced Tip Carving Optimizations
,”
Proceedings of the ASME Turbo Expo
,
June 13–17
,
Seoul, South Korea
, ASME Paper No. GT2016-58107.
16.
Zhou
,
C.
, and
Hodson
,
H.
,
2012
, “
Squealer Geometry Effects on Aerothermal Performance of Tip-Leakage Flow of Cavity Tips
,”
J. Propuls. Power
,
28
(
3
), pp.
556
567
.
17.
De Maesschalck
,
C.
,
Lavagnoli
,
S.
,
Paniagua
,
G.
,
Verstraete
,
T.
,
Olive
,
R.
, and
Picot
,
P.
,
2016
, “
Heterogeneous Optimization Strategies for Carved and Squealer-Like Turbine Blade Tips
,”
ASME J. Turbomach.
,
138
(
12
), p.
121011
.
18.
Maral
,
H.
,
Alpman
,
E.
,
Kavurmacioğlu
,
L.
, and
Camci
,
C.
,
2019
, “
A Genetic Algorithm Based Aerothermal Optimization of Tip Carving for an Axial Turbine Blade
,”
Int. J. Heat Mass Transfer
,
143
(
11
), p.
118419
.
19.
Cernat
,
B. C.
,
Pátý
,
M.
,
De Maesschalck
,
C.
, and
Lavagnoli
,
S.
,
2019
, “
Experimental and Numerical Investigation of Optimized Blade Tip Shapes—Part I: Turbine Rainbow Rotor Testing and Numerical Methods
,”
ASME J. Turbomach.
,
141
(
1
), p.
011006
.
20.
Pátý
,
M.
,
Cernat
,
B. C.
,
De Maesschalck
,
C.
, and
Lavagnoli
,
S.
,
2019
, “
Experimental and Numerical Investigation of Optimized Blade Tip Shapes—Part II: Tip Flow Analysis and Loss Mechanisms
,”
ASME J. Turbomach.
,
141
(
1
), p.
011007
.
21.
Zhang
,
Q.
, and
He
,
L.
,
2013
, “
Tip-Shaping for HP Turbine Blade Aerothermal Performance Management
,”
ASME J. Turbomach.
,
135
(
9
), p.
051025
.
22.
Bailey
,
E. E.
,
1972
, “Effect of Grooved Casing Treatment on the Flow Range Capability of a Single-Stage Axial-Flow Compressor,” NASA Report No. TM X-2459.
23.
Müller
,
M. W.
,
Biela
,
C.
,
Schiffer
,
H. P.
, and
Hah
,
C.
,
2008
, “
Interaction of Rotor and Casing Treatment Flow in an Axial Single-Stage Transonic Compressor With Circumferential Grooves
,”
Proceedings of the ASME Turbo Expo
,
Berlin, Germany
,
June 9–13
, ASME Paper No. GT2008-50135.
24.
Müller
,
M. W.
,
Schiffer
,
H. P.
,
Voges
,
M.
, and
Hah
,
C.
,
2011
, “
Investigation of Passage Flow Features in a Transonic Compressor Rotor With Casing Treatments
,”
Proceedings of the ASME Turbo Expo
,
Vancouver, British Colombia, Canada
,
June 6–10, 2011
, ASME Paper No. GT2011-45364.
25.
Gao
,
J.
,
Zheng
,
Q.
, and
Yue
,
G.
,
2012
, “
Reduction of Tip Clearance Losses in an Unshrouded Turbine by Rotor-Casing Contouring
,”
J. Propuls. Power
,
28
(
5
), pp.
936
945
.
26.
Kavurmacioğlu
,
L. A.
,
Senel
,
C. B.
,
Maral
,
H.
, and
Camci
,
C.
,
2018
, “
Casing Grooves to Improve Aerodynamic Performance of a HP Turbine Blade
,”
Aerosp. Sci. Technol.
,
76
(
5
), pp.
194
203
.
27.
Palafox
,
P.
,
Oldfield
,
M. L. G.
,
LaGraff
,
J. E.
, and
Jones
,
T. V.
,
2008
, “
PIV Maps of Tip Leakage and Secondary Flow Fields on a Low-Speed Turbine Blade Cascade With Moving End Wall
,”
ASME J. Turbomach.
,
130
(
1
), p.
011001
.
28.
Krishnababu
,
S. K.
,
Dawes
,
W. N.
,
Hodson
,
H. P.
,
Lock
,
G. E.
,
Hannis
,
J.
, and
Whitney
,
C.
,
2009
, “
Aerothermal Investigations of Tip Leakage Flow in Axial Turbines—Part II: Effect of Relative Casing Motion
,”
ASME J. Turbomach.
,
131
(
1
), p.
011007
.
29.
Thole
,
K. A.
,
Barringer
,
M.
,
Berdanier
,
R. A.
,
Fishbone
,
S.
,
Wagner
,
J.
,
Dennis
,
R.
,
Black
,
J.
, et al
,
2021
, “
Defining a Testbed for the U.S. Turbine Industry: The National Experimental Turbine (NExT)
,”
AIAA Propulsion and Energy 2021 Forum
, AIAA Paper No. 2021-3489.
30.
Tien
,
L. M.
,
2024
, “
CFD Predictions of the National Experimental Turbine Stage
,”
Ph.D. dissertation
,
The Pennsylvania State University
,
State College, PA
.
31.
Siemens Industries Digital Software
,
2021
, “
Simcenter STAR-CCM+, Version 2021.3
,”
Plano, TX
.
32.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.
33.
Wiese
,
C. J.
,
Berdanier
,
R. A.
, and
Thole
,
K. A.
,
2024
, “
Optimization of Axisymmetric Rotor Tip Seal Grooves for Aerodynamic and Durability Improvements of Small-Core Turbines
,”
Proceedings of the ASME Turbo Expo
,
London, UK
,
June 24–28
, ASME Paper No. GT2024-124299.
34.
Berdanier
,
R. A.
,
Tien
,
L. M.
, and
Thole
,
K. A.
,
2024
. “
Comparing As-Built Additively Manufactured Turbine Airfoil Performance With Design-Intent Geometry
,”
Proceedings of the ASME Turbo Expo
,
London, UK
,
June 24–28
, ASME Paper No. GT2024-128894.
35.
Mattingly
,
J. D.
, and
Boyer
,
K. M.
,
2016
,
Elements of Propulsion
, 2nd ed.,
American Institute of Aeronautics and Astronautics
,
Reston, VA
.
You do not currently have access to this content.