Abstract

The article presents a data processing methodology to identify the noise sources in low-pressure turbine (LPT) stages and their relative importance. Scale adaptive simulation (SAS) has been carried out on a geometry reproducing the midspan blade section of an entire LPT stage. The proper orthogonal decomposition (POD) is applied to data matrices constructed with the velocity and the pressure fields in order to distinctly extract the coherent structures responsible for velocity fluctuations and pressure waves (i.e., POD modes from the corresponding kernel), their temporal evolution and energies. The cross-correlation matrices of the pressure modes and the velocity modes reveal the degree of coupling between pressure and velocity oscillations, thus highlighting the modes linked to the same flow phenomena. The results show that the periodic vortex shedding at the stator trailing edge emits strong pressure waves, and the upstream-propagating waves reflect against the adjacent stator suction surface. The POD modes related to the rotor–stator interaction show peak amplitudes at the blade passing frequency and its harmonics and their shapes mimic the potential interaction in the stator domain and the migration of viscous wakes in the rotor domain. The POD modes with lower energy content correspond to the stochastic turbulent structures originated from the turbulent boundary layers as well as those carried by the vane and blade wakes. The biggest noise sources of the current flow fields are identified to be the von Karman vortex street downstream the stator trailing edge and the rotor–stator interaction.

References

1.
Schram
,
C.
, and
Bennett
,
G. J.
,
2024
, “
Aeroacoustics Research in Europe: The CEAS-ASC Report on 2022 Highlights
,”
J. Sound Vib.
,
568
, p.
117895
.
2.
Peake
,
N.
, and
Parry
,
A.
,
2012
, “
Modern Challenges Facing Turbomachinery Aeroacoustics
,”
Annu. Rev. Fluid Mech.
,
44
(
1
), pp.
227
248
.
3.
Harper
,
R.
,
1969
, “
Vibration and Noise Characteristics of an Aircraft-Type Gas Turbine Used in a Marine Propulsion System
,”
Proceedings of the ASME 1969 Gas Turbine Conference and Products Show
,
Cleveland, OH
,
Mar. 9–13
, p.
V001T01A008
, Paper No. 69-GT-8.
4.
Menter
,
F.
,
Kuntz
,
M.
, and
Bender
,
R.
,
2003
, “
A Scale-Adaptive Simulation Model for Turbulent Flow Predictions
,”
41st Aerospace Sciences Meeting and Exhibit
,
Reno, NV
,
Jan. 6–9
, Paper No. AIAA 2003-0767.
5.
Wang
,
G.
,
Zhong
,
D.
,
Ge
,
N.
, and
Yang
,
R.
,
2019
, “
Scale-Adaptive Simulations of High-Pressure Turbine Guide Vane
,”
Proceedings of the ASME 2019 Gas Turbine India Conference
,
Chennai
,
Dec. 5–6
, p.
V001T02A011
, Paper No. GTINDIA2019-2446.
6.
Wang
,
G.
,
Ge
,
N.
, and
Zhong
,
N.
,
2020
, “
Numerical Investigation of the Wake Vortex-Related Flow Mechanisms in Transonic Turbines
,”
Int. J. Aerosp. Eng.
,
2020
, p.
8825542
.
7.
Hu
,
K.
,
Fang
,
Y.
,
Zheng
,
Y.
,
Wang
,
G.
, and
Moreau
,
S.
,
2020
, “
Numerical Investigation of Influence of Entropy Wave on the Acoustic and Wall Heat Transfer Characteristics of a High-Pressure Turbine Guide Vane
,”
Acoustics
,
2
(
3
), pp.
524
538
.
8.
Lengani
,
D.
,
Simoni
,
D.
,
Pichler
,
R.
,
Sandberg
,
R.
,
Michelassi
,
V.
, and
Bertini
,
F.
,
2018
, “
Identification and Quantification of Losses in a LPT Cascade by POD Applied to LES Data
,”
Int. J. Heat Fluid Flow
,
70
, pp.
28
40
.
9.
Lengani
,
D.
,
Simoni
,
D.
,
Pralits
,
J. O.
,
Đurović
,
K.
,
De Vincentiis
,
L.
,
Henningson
,
D. S.
, and
Hanifi
,
A.
,
2022
, “
On the Receptivity of Low-Pressure Turbine Blades to External Disturbances
,”
J. Fluid Mech.
,
937
, p.
A36
.
10.
Canepa
,
E.
,
Lengani
,
D.
,
Nilberto
,
A.
,
Petronio
,
D.
,
Simoni
,
D.
,
Bertini
,
F.
, and
Taddei
,
S. R.
,
2022
, “
Flow Coefficient and Reduced Frequency Effects on Low Pressure Turbine Unsteady Losses
,”
J. Propul. Power
,
38
(
1
), pp.
18
29
.
11.
Lengani
,
D.
, and
Simoni
,
D.
,
2015
, “
Recognition of Coherent Structures in the Boundary Layer of a Low-Pressure-Turbine Blade for Different Free-Stream Turbulence Intensity Levels
,”
Int. J. Heat Fluid Flow
,
54
, pp.
1
13
.
12.
Verdoya
,
J.
,
Dellacasagrande
,
M.
,
Barsi
,
D.
,
Lengani
,
D.
, and
Simoni
,
D.
,
2022
, “
Identification of Free-Stream and Boundary Layer Correlating Events in Free-Stream Turbulence-Induced Transition
,”
Phys. Fluids
,
34
(
1
), p.
014109
.
13.
Sajadmanesh
,
S. M.
,
Mojaddam
,
M.
,
Mohseni
,
A.
, and
Nikparto
,
A.
,
2019
, “
Numerical Identification of Separation Bubble in an Ultra-High-Lift Turbine Cascade Using URANS Simulation and Proper Orthogonal Decomposition
,”
Aerosp. Sci. Technol.
,
93
, p.
105329
.
14.
Lengani
,
D.
,
Petronio
,
D.
,
Simoni
,
D.
, and
Ubaldi
,
M.
,
2022
, “
A Design-Space Minimum Sampling Strategy Based on Proper-Orthogonal-Decomposition Projection
,”
Proc. R. Soc. A: Math. Phys. Eng. Sci.
,
478
(
2265
), p.
20220392
.
15.
Robison
,
Z.
, and
Gross
,
A.
,
2021
, “
Large-Eddy Simulation of Low-Pressure Turbine Cascade With Unsteady Wakes
,”
Aerospace
,
8
(
7
), p.
184
.
16.
Lengani
,
D.
,
Simoni
,
D.
,
Ubaldi
,
M.
,
Zunino
,
P.
, and
Bertini
,
F.
,
2017
, “
A POD-Based Procedure for the Split of Unsteady Losses of an LPT Cascade
,”
Int. J. Turbomach. Propuls. Power
,
2
(
4
), pp.
1
17
.
17.
Sterzinger
,
P. Z.
,
Zerobin
,
S.
,
Merli
,
F.
,
Wiesinger
,
L.
,
Dellacasagrande
,
M.
,
Peters
,
A.
,
Maini
,
G.
,
Heitmeir
,
F.
, and
Göttlich
,
E.
,
2020
, “
Unsteady Flow Interactions Between a High- and Low-Pressure Turbine
,”
ASME J. Turbomach.
,
142
(
10
), p.
101012
.
18.
Menter
,
F. R.
, and
Egorov
,
Y.
,
2010
, “
The Scale-Adaptive Simulation Method for Unsteady Turbulent Flow Predictions. Part 1: Theory and Model Description
,”
Flow Turbul. Combust.
,
85
(
1
), pp.
113
138
.
19.
Egorov
,
Y.
,
Menter
,
F. R.
,
Lechner
,
R.
, and
Cokljat
,
D.
,
2010
, “
The Scale-Adaptive Simulation Method for Unsteady Turbulent Flow Predictions. Part 2: Application to Complex Flows
,”
Flow Turbul. Combust.
,
85
(
1
), pp.
139
165
.
20.
Suzen
,
Y. B.
, and
Huang
,
G. P.
,
2000
, “
Model of Flow Transition Using an Intermittency Transport Equation
,”
ASME J. Fluids Eng.
,
122
(
2
), pp.
273
284
.
21.
Brigham
,
E. O.
,
1974
,
The Fast Fourier Transform
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
22.
Sirovich
,
L.
,
1987
, “
Turbulence and the Dynamics of Coherent Structures, Parts I–III
,”
Quart. Appl. Math.
,
45
(
3
), pp.
561
571
.
23.
Yan
,
L.
,
Luan
,
Y.
,
Simoni
,
D.
,
Sun
,
T.
,
Yang
,
L.
,
Zunino
,
P.
, and
Magagnato
,
F.
,
2024
, “
Noise Mechanisms of an Axial Turbine Stage Based on Large Eddy Simulation
,”
Flow Turbul. Combust.
,
113
(
2
), pp.
249
273
.
24.
Arbey
,
H.
, and
Bataille
,
J.
,
1983
, “
Noise Generated by Airfoil Profiles Placed in a Uniform Laminar Flow
,”
J. Fluid Mech.
,
134
(
1
), pp.
33
47
.
25.
Wheeler
,
A.
,
Sandberg
,
R.
,
Sandham
,
N. S.
,
Pichler
,
R.
,
Michelassi
,
V.
, and
Laskowski
,
G.
,
2016
, “
Direct Numerical Simulations of a High-Pressure Turbine Vane
,”
ASME J. Turbomach.
,
138
(
7
), p.
071003
.
26.
Rowe
,
A.
,
Fry
,
A. L. A.
, and
Motallebi
,
F.
,
2001
, “
Influence of Boundary-Layer Thickness on Base Pressure and Vortex Shedding Frequency
,”
AIAA J.
,
39
(
4
), pp.
754
756
.
27.
Lengani
,
D.
,
Simoni
,
D.
,
Pichler
,
R.
,
Sandberg
,
R.
,
Michelassi
,
V.
, and
Bertini
,
F.
,
2019
, “
On the Identification and Decomposition of the Unsteady Losses in a Turbine Cascade
,”
ASME J. Turbomach.
,
141
(
3
), pp.
031005
.
28.
Borée
,
J.
,
2003
, “
Extended Proper Orthogonal Decomposition: A Tool to Analyse Correlated Events in Turbulent Flows
,”
Exp. Fluids
,
35
(
2
), pp.
188
192
.
You do not currently have access to this content.