Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

The development of novel engine architectures is vital in achieving the aviation sector’s net-zero carbon emission target by 2050. With today’s digital decade providing support for an accelerated technology maturation, the challenge for turbomachinery design remains to significantly push the limits of current performance within an ambitious development lead time. In this context, it is essential to adopt a design framework where the predictive models or simulations employed target a sufficiently reliable performance assessment. These models must be tailored to the dynamics of an evolving industrial design process and therefore continuously balance required design flexibility, robust evaluation, appropriate fidelity (i.e., the level of detail and accuracy they provide), and resulting evaluation time. This article discusses a framework for designing axial compressors and its application to the aeromechanical optimization of a high-speed compressor rotor. The design environment integrates geometry parametrization, a modular evaluation with different levels of fidelity for the aerodynamic and structural models, and surrogate-based optimization (SBO) capabilities. It is shown how the combination of a modular sequencing of the different models and the acceleration enabled by high-performance computing (HPC) and machine learning allows for a more advanced preliminary design. A significant gain in isentropic efficiency is attained while satisfying all structural constraints. At the same time, it is demonstrated that the framework is compatible with the characteristics of the preliminary design phase: both in its ability to adapt to cycle and design changes as well as regarding the turnaround time of the optimization itself.

References

1.
Benini
,
E.
,
Mistry
,
C.
, and
Wadia
,
A. R.
,
2023
, “
Historical Developments in Fan Technologies for Aeroengines
,” Proceedings of ASME Turbo Expo 2023, Paper No. GT2023-101639, V13AT29A013.
2.
Laskowski
,
G. M.
,
Kopriva
,
J.
,
Michelassi
,
V.
,
Shankaran
,
S.
,
Paliath
,
U.
,
Bhaskaran
,
R.
,
Wang
,
Q.
,
Talnikar
,
C.
,
Wang
,
Z.
, and
Jia
,
F.
,
2016
, “
Future Directions of High-Fidelity CFD for Aero-Thermal Turbomachinery Research, Analysis and Design
,” 46th AIAA Fluid Dynamics Conference, Paper No. AIAA 2016-3322.
3.
Michelassi
,
V.
,
2023
, “
High-Fidelity and Machine-Learning Methods for Turbomachinery in the Age of Energy Transition
,”
ASME IGTTA Award Lecture
,
Boston, MA
,
June 26
.
4.
Denton
,
J. D.
, and
Dawes
,
W. N.
,
1998
, “
Computational Fluid Dynamics for Turbomachinery Design
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
,
213
(
2
), pp.
107
124
.
5.
Shahpar
,
S.
,
2011
, “
Challenges to Overcome for Routine Usage of Automatic Optimisation in the Propulsion Industry
,”
Aeronaut. J.
,
115
(
1172
), pp.
615
625
.
6.
Spalart
,
P. R.
, and
Venkatakrishnan
,
V.
,
2016
, “
On the Role and Challenges of CFD in the Aerospace Industry
,”
Aeronaut. J.
,
120
(
1223
), p.
209
.
7.
Sobieszczanski-Sobieski
,
J.
, and
Haftka
,
R.
,
1997
, “
Multidisciplinary Aerospace Design Optimization: Survey of Recent Developments
,”
Struct. Optim.
,
14
, pp.
1
23
.
8.
Peherstorfer
,
B.
,
Willcox
,
K.
, and
Gunzburger
,
M.
,
2018
, “
Survey of Multifidelity Methods in Uncertainty Propagation, Inference, and Optimization
,”
SIAM Rev.
,
60
(
3
), pp.
550
591
.
9.
Keane
,
A. J.
, and
Nair
,
P. B.
,
2005
,
Computational Approaches for Aerospace Design: The Pursuit of Excellence
,
John Wiley & Sons
,
Chichester, England
.
10.
March
,
A.
, and
Willcox
,
K.
,
2012
, “
Provably Convergent Multifidelity Optimization Algorithm Not Requiring High-Fidelity Derivatives
,”
AIAA J.
,
50
(
5
), p.
1079
.
11.
Schmit
,
L. A.
,
1960
, “
Structural Design by Systematic Synthesis
,”
2nd Conference on Electronic Computation
,
Pittsburg, PA
,
Sept. 8–9
, pp.
105
132
.
12.
Schmit
,
L. A.
,
1971
,
Recent Advances in Matrix Methods of Structural Analysis and Design
,
Universiy of Alabama Press
,
Tuscaloosa, AL
.
13.
Haftka
,
R. T.
,
Sobieszczanski-Sobieski
,
J.
, and
Padula
,
S. L.
,
1992
, “
On Options for Interdisciplinary Analysis and Design Optimization
,”
Struct. Optim.
,
4
, pp.
65
74
.
14.
Cramer
,
E. J.
,
Dennis
,
J. E.
,
Frank
,
P. D.
,
Lewis
,
R. M.
, and
Shubin
,
G. R.
,
1994
, “
Problem Formulation for Multidisciplinary Optimization
,”
SIAM J. Optim.
,
4
(
4
), pp.
754
776
.
15.
Lambe
,
A. B.
, and
Martins
,
J. R. R. A.
,
2012
, “
Extensions to the Design Structure Matrix for the Description of Multidisciplinary Design, Analysis, and Optimization Processes
,”
Struct. Multidisc. Optim.
,
46
, pp.
273
284
.
16.
Martins
,
J. R. R. A.
, and
Lambe
,
A. B.
,
2013
, “
Multidisciplinary Design Optimization: A Survey of Architectures
,”
AIAAJ
,
51
(
9
), pp.
1
53
.
17.
Agte
,
J.
,
de Weck
,
O.
,
Sobieszczanski-Sobieski
,
J.
,
Arendsen
,
P.
,
Morris
,
A.
, and
Spieck
,
M.
,
2009
, “
MDO: Assessment and Direction for Advancement—An Opinion of One International Group
,”
Struct. Multidisc. Optim.
,
40
, pp.
17
33
.
18.
Gazaix
,
A.
,
Gallard
,
F.
,
Gachelin
,
V.
,
Druot
,
T.
,
Grihon
,
S.
,
Ambert
,
V.
, and
Guénot
,
D.
,
2017
, “
Towards the Industrialization of New MDO Methodologies and Tools for Aircraft Design
,”
18th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference
,
Dever, CO
,
June 5–9
.
19.
Hoogreef
,
2017
, “
Advise, Formalize and Integrate MDO Architectures: A Methodology and Implementation
,” Dissertation,
Delft University of Technology
,
Delft, Netherlands
.
20.
Daoud
,
F.
,
Deinert
,
S.
, and
Petersson
,
O.
,
2022
, “
MDO Use Cases—The Driving Force of Industrial Application and Research
,”
3rd European workshop on MDO
,
Paris, France
,
Sept. 20–21
.
21.
Panchenko
,
Y.
,
Moustapha
,
H.
,
Mah
,
S.
,
Patel
,
K.
,
Dowhan
,
M.
, and
Hall
,
D.
,
2002
, “
Preliminary Multi-Disciplinary Optimization in Turbomachinery Design
,”
RTO AVT Symposium on Reduction of Military Vehicle Acquisition Time and Cost through Advanced Modelling and Virtual Simulation
,
Paris, France
,
Apr. 22–25
.
22.
Siller
,
U.
,
Voß
,
C.
, and
Nicke
,
E.
,
2009
, “
Automated Multidisciplinary Optimization of a Transonic Axial Compressor
,” 47th AIAA Aerospace Sciences Meeting, Paper No. AIAA 2009-863.
23.
Lepot
,
I.
,
Leborgne
,
M.
,
Schnell
,
R.
,
Yin
,
J.
,
Delattre
,
G.
,
Falissard
,
F.
, and
Talbotec
,
J.
,
2011
, “
Aero-mechanical Optimization of a Contra-rotating Open Rotor and Assessment of Its Aerodynamic and Acoustic Characteristics
,”
Proc. Inst. Mech. Eng., Part A: J. Power Energy
,
255
(
7
), pp.
850
863
.
24.
Schlaps
,
R. C.
,
Toropov
,
V. V.
, and
Shahpar
,
S.
,
2017
, “
Multi-disciplinary Optimisation of a Compressor Rotor Subjected to Ice Impact
,” Proceedings of 12th European Conference on Turbomachinery Fluid dynamics & Thermodynamics, Paper No. ETC2017-268.
25.
Jaron
,
R.
,
Moreau
,
A.
,
Guérin
,
S.
,
Enghardt
,
L.
,
Lengyel-Kampmann
,
T.
,
Otten
,
T.
, and
Nicke
,
E.
,
2022
, “
Multidisciplinary Design Optimization of a Low-Noise and Efficient Next-Generation Aero-Engine Fan
,”
ASME J. Turbomach.
,
144
(
1
), p.
011004
.
26.
Baert
,
L.
,
Grasso
,
G.
,
Sainvitu
,
C.
,
Lepot
,
I.
,
van Enkhuizen
,
M.
,
Lammers
,
K.
, and
Bown
,
N.
,
2022
, “
From Concept to Wind Tunnel Model: Efficient Design Methodology for Innovative Low-Noise Propellers
,” Proceedings of the ASME Turbo Expo 2022, Paper No. GT2022-77969, V10DT34A001.
27.
Phillips
,
S.
,
2020
, “
Facilitating the Use of Optimisation in the Aerodynamic Design of Axial Compressors
,” Ph.D. thesis,
Apollo – University of Cambridge Repository
,
Cambridge, UK
.
28.
Box
,
G. E. P.
,
1979
, “Robustness in the Strategy of Scientific Model Building,”
Robustness in Statistics
,
Academic Press
,
London, UK
, pp.
201
236
.
29.
Box
,
G. E. P.
,
Luceño
,
A.
, and
Paniagua-Quinones
,
M. d. C.
,
2009
,
Statistical Control by Monitoring
, 2nd ed.,
Wiley
,
New York
.
30.
Lieblein
,
S.
,
1960
, “
Incidence and Deviation-Angle Correlations for Compressor Cascades
,”
J. Basic Eng.
,
82
, pp.
575
584
.
31.
Drela
,
M.
, and
Giles
,
M. B.
,
1986
, “
Viscous-Inviscid Analysis of Transonic and Low Reynolds Number Airfoils
,”
AIAA
,
25
(
10
), p.
1347
.
32.
Cambier
,
L.
,
Gazaix
,
M.
,
Heib
,
S.
,
Plot
,
S.
,
Poinot
,
M.
,
Veuillot
,
J.
,
Boussuge
,
J.
, and
Montagnac
,
M.
,
2011
, “
An Overview of the Multi-Purpose elsA Flow Solver
,”
Aerosp. Lab
,
2
, pp.
1
15
.
33.
Nyssen
,
F.
,
de Cazenove
,
J.
,
Nigro
,
R.
,
Cracco
,
C.
,
Baert
,
L.
,
Ruess
,
J.-S.
, and
Valentin
,
V.
,
2024
, “
Multi-Disciplinary Surrogate-Based Optimization of a Compressor Rotor Blade Considering Ice Impact
,”
ASME. J. Eng. Gas Turbines Power
.
34.
Sainvitu
,
C.
,
Iliopoulou
,
V.
, and
Lepot
,
I.
,
2010
, “Global Optimization With Expensive Functions – Sample Turbomachinery Design Application,”
Recent Advances in Optimization and its Applications in Engineering
,
Springer
,
Berlin, Heidelberg
, pp.
499
509
.
35.
Forrester
,
A. I. J.
, and
Keane
,
A. J.
,
2009
, “
Recent Advances in Surrogate-Based Optimization
,”
Prog. Aerosp. Sci.
,
45
(
1–3
), pp.
50
79
.
36.
Sobol
,
I.
,
2001
, “
Global Sensitivity Indices for Nonlinear Mathematical Models and Their Monte Carlo Estimates
,”
Math. Comput. Simul.
,
55
, pp.
271
280
.
37.
Reid
,
L.
, and
Urasek
,
D. C.
,
1973
, “
Experimental Evaluation of the Effects of a Blunt Leading Edge on the Performance of a Transonic Rotor
,”
J. Eng. Power
,
95
(
3
), pp.
199
204
.
38.
John
,
A.
,
Shahpar
,
S.
, and
Qin
,
N.
,
2016
, “
Alleviation of Shock-Wave Effects on a Highly Loaded Axial Compressor Through Novel Blade Shaping
,”
ASME Turbo Expo 20216: Turbomachinery Technical Conference and Exposition
,
Seoul, South Korea
,
June 13–17
.
39.
Lefas
,
D.
, and
Miller
,
R. J.
,
2024
, “
Design of Aerodynamically Balanced Transonic Compressor Rotors
,”
ASME. J. Turbomach.
,
146
(
2
), p.
021011
.
40.
Adamczyk
,
J. J.
,
Celestina
,
M. L.
, and
Greitzer
,
E. M.
,
1993
, “
The Role of Tip Clearance in High-Speed Fan Stall
,”
ASME J. Turbomach.
,
115
(
1
), pp.
28
38
.
You do not currently have access to this content.