Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

We investigate the unsteady behavior of an in-line jet impingement array of nine jets at a Reynolds number of 10,000 in a narrow channel subjected to a developing cross flow of up to 25% of the bulk jet velocity. To this end, we present an improved version of a previously published large eddy simulation (LES) now with resolved turbulence at the inflow boundaries. After a careful analysis of the transient behavior and statistical convergence of the LES, we discuss the time-averaged heat transfer characteristics of the configuration compared to numerical references of similar configurations. We then show how the large-scale unsteadiness increases from jet to jet. Both space-only and spectral proper orthogonal decompositions (POD and SPOD) are used to discuss the large-scale organization of single jets and multiple jets in combination. The latter shows a qualitative change in the unsteady behavior of the temperature footprint on the impingement wall with increasing cross flow.

References

1.
Weigand
,
B.
, and
Spring
,
S.
,
2011
, “
Multiple Jet Impingement—A Review
,”
Heat Transfer Res.
,
42
(
2
), pp.
101
142
.
2.
Barbosa
,
F. V.
,
Teixeira
,
S. F. C. F.
, and
Teixeira
,
J. C. F.
,
2023
, “
Convection From Multiple Air Jet Impingement—A Review
,”
Appl. Therm. Eng.
,
218
, p.
119307
.
3.
Dutta
,
S.
, and
Singh
,
P.
,
2021
, “
Impingement Heat Transfer Innovations and Enhancements: A Discussion on Selected Geometrical Features
,”
ASME Turbo Expo 2021: Turbomachinery Technical Conference and Exposition
,
Virtual Online
,
June 7–11
.
4.
Plant
,
R. D.
,
Friedman
,
J.
, and
Saghir
,
M. Z.
,
2023
, “
A Review of Jet Impingement Cooling
,”
Int. J. Thermofluids
,
17
, p.
100312
.
5.
Shukla
,
A.
, and
Dewan
,
A.
,
2017
, “
Flow and Thermal Characteristics of Jet Impingement: Comprehensive Review
,”
Int. J. Heat Technol.
,
35
, pp.
153
166
.
6.
Zuckerman
,
N.
, and
Lior
,
N.
,
2006
, “
Jet Impingement Heat Transfer: Physics, Correlations, and Numerical Modeling
,”
Adv. Heat Transfer
,
39
, pp.
565
631
.
7.
Dairay
,
T.
,
Fortuné
,
V.
,
Lamballais
,
E.
, and
Brizzi
,
L.-E.
,
2015
, “
Direct Numerical Simulation of a Turbulent Jet Impinging on a Heated Wall
,”
J. Fluid Mech.
,
764
, pp.
362
394
.
8.
Wilke
,
R.
, and
Sesterhenn
,
J.
,
2017
, “
Statistics of Fully Turbulent Impinging Jets
,”
J. Fluid Mech.
,
825
, pp.
795
824
.
9.
Hossain
,
J.
,
Fernandez
,
E.
,
Garrett
,
C.
, and
Kapat
,
J.
,
2017
, “
Flow and Heat Transfer Analysis in a Single Row Narrow Impingement Channel: Comparison of Particle Image Velocimetry, Large Eddy Simulation, and RANS to Identify RANS Limitations
,”
ASME J. Turbomach.
,
140
(
3
), p.
031010
.
10.
Otero-Pérez
,
J. J.
,
Sandberg
,
R. D.
,
Mizukami
,
S.
, and
Tanimoto
,
K.
,
2021
, “
High-Fidelity Simulations of Multi-jet Impingement Cooling Flows
,”
J. Turbomach.
,
143
(
8
), p.
081011
.
11.
Otero-Pérez
,
J. J.
, and
Sandberg
,
R. D.
,
2020
, “
Compressibility and Variable Inertia Effects on Heat Transfer in Turbulent Impinging Jets
,”
J. Fluid Mech.
,
887
, p.
A15
.
12.
Draksler
,
M.
,
Ničeno
,
B.
,
Končar
,
B.
, and
Cizelj
,
L.
,
2014
, “
Large Eddy Simulation of Multiple Impinging Jets in Hexagonal Configuration—Mean Flow Characteristics
,”
Int. J. Heat Fluid Flow
,
46
, pp.
147
157
.
13.
Draksler
,
M.
,
Končar
,
B.
, and
Cizelj
,
L.
,
2019
, “
On the Accuracy of Large Eddy Simulation of Multiple Impinging Jets
,”
Int. J. Heat Mass Transfer
,
133
, pp.
596
605
.
14.
Nguyen
,
M.
,
Boussuge
,
J.-F.
,
Sagaut
,
P.
, and
Larroya-Huguet
,
J.-C.
,
2023
, “
Large Eddy Simulation of a Row of Impinging Jets With Upstream Crossflow Using the Lattice Boltzmann Method
,”
Int. J. Heat Mass Transfer
,
212
, p.
124256
.
15.
Laroche
,
E.
,
Fenot
,
M.
,
Dorignac
,
E.
,
Vuillerme
,
J.-J.
,
Brizzi
,
L. E.
, and
Larroya
,
J. C.
,
2017
, “
A Combined Experimental and Numerical Investigation of the Flow and Heat Transfer Inside a Turbine Vane Cooled by Jet Impingement
,”
ASME J. Turbomach.
,
140
(
3
), p.
031002
.
16.
Yang
,
L.
,
Ren
,
J.
,
Jiang
,
H.
, and
Ligrani
,
P.
,
2014
, “
Experimental and Numerical Investigation of Unsteady Impingement Cooling Within a Blade Leading Edge Passage
,”
Int. J. Heat Mass Transfer
,
71
, pp.
57
68
.
17.
Yang
,
L.
,
Ligrani
,
P.
,
Ren
,
J.
, and
Jiang
,
H.
,
2015
, “
Unsteady Structure and Development of a Row of Impingement Jets, Including Kelvin–Helmholtz Vortex Development
,”
ASME J. Fluids Eng.
,
137
(
5
), p.
051201
.
18.
Rönnberg
,
K.
, and
Duwig
,
C.
,
2021
, “
Heat Transfer and Associated Coherent Structures of a Single Impinging Jet From a Round Nozzle
,”
Int. J. Heat Mass Transfer
,
173
, p.
121197
.
19.
Tabassum
,
S.
,
Hilfer
,
M.
,
Brakmann
,
R. G.
,
Morsbach
,
C.
,
Willert
,
C.
,
Matha
,
M.
, and
Schroll
,
M.
,
2023
, “
Assessment of Computational Fluid Dynamic Modeling of Multi-jet Impingement Cooling and Validation With the Experiments
,”
ASME J. Turbomach.
,
145
(
7
), p.
071005
.
20.
Brakmann
,
R. G.
,
Brose
,
N.
,
Carvalho
,
F.
,
Chargui
,
S.
, and
Guarino
,
R.
,
2023
, “
A Numerical Analysis of Cross-Flow Reinforced Impingement Cooling With a U-Shaped Flow-Guide on the Hole Plate
,”
ASME Turbo Expo 2023: Turbomachinery Technical Conference and Exposition: Volume 6B: Heat Transfer
,
Boston, MA
,
June 26–30
,
American Society of Mechanical Engineers
.
21.
Schlüß
,
D.
,
Frey
,
C.
, and
Ashcroft
,
G.
,
2016
, “
Consistent Non-reflecting Boundary Conditions for Both Steady and Unsteady Flow Simulations in Turbomachinery Applications
,”
ECCOMAS Congress 2016 VII European Congress on Computational Methods in Applied Sciences and Engineering
,
Crete Island, Greece
,
June 5–10
.
22.
van Leer
,
B.
,
1979
, “
Towards the Ultimate Conservative Difference Scheme. V. A Second-Order Sequel to Godunov’s Method
,”
J. Comput. Phys.
,
32
(
1
), pp.
101
136
.
23.
Roe
,
P. L.
,
1981
, “
Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes
,”
J. Comput. Phys.
,
43
(
2
), pp.
357
372
.
24.
Shu
,
C.-W.
, and
Osher
,
S.
,
1988
, “
Efficient Implementation of Essentially Non-oscillatory Shock-Capturing Schemes
,”
J. Comput. Phys.
,
77
(
2
), pp.
439
471
.
25.
Nicoud
,
F.
, and
Ducros
,
F.
,
1999
, “
Subgrid-Scale Stress Modelling Based on the Square of the Velocity Gradient Tensor
,”
Flow Turbulence Combust.
,
62
, pp.
183
200
.
26.
Morsbach
,
C.
, and
Bergmann
,
M.
,
2020
, “Critical Analysis of the Numerical Setup for the Large-Eddy Simulation of the Low-Pressure Turbine Profile T106C,”
Direct and Large Eddy Simulation XII
,
M.
García-Villalba
,
H.
Kuerten
, and
M. V.
Salvetti
, eds.,
Springer International Publishing
,
Cham
, pp.
343
348
.
27.
Bergmann
,
M.
,
Morsbach
,
C.
,
Ashcroft
,
G.
, and
Kügeler
,
E.
,
2022
, “
Statistical Error Estimation Methods for Engineering-Relevant Quantities From Scale-Resolving Simulations
,”
ASME J. Turbomach.
,
144
(
3
), p.
031005
.
28.
Fard afshar
,
N.
,
Kozulovic
,
D.
,
Henninger
,
S.
,
Deutsch
,
J.
, and
Bechlars
,
P.
,
2023
, “
Turbulence Anisotropy Analysis at the Middle Section of a Highly Loaded 3D Linear Turbine Cascade Using Large Eddy Simulation
,”
J. Global Power Propul. Soc.
,
7
, pp.
71
84
.
29.
Schroll
,
M.
,
Klinner
,
J.
,
Müller
,
M.
,
Matha
,
M.
,
Hilfer
,
M.
,
Tabassum
,
S.
,
Morsbach
,
C.
,
Brakmann
,
R.
, and
Willert
,
C.
,
2022
, “
Experimental and Numerical Investigation of a Multi-jet Impingement Cooling Configuration
,” 20th International Symposium on Application of Laser and Imaging Techniques to Fluid Mechanics,
Lisbon, Portugal
,
July 11–14
,
Springer
.
30.
Shur
,
M. L.
,
Spalart
,
P. R.
,
Strelets
,
M. K.
, and
Travin
,
A. K.
,
2014
, “
Synthetic Turbulence Generators for RANS-LES Interfaces in Zonal Simulations of Aerodynamic and Aeroacoustic Problems
,”
Flow Turbul. Combust.
,
93
(
1
), pp.
63
92
.
31.
Georgiadis
,
N. J.
,
Rizzetta
,
D. P.
, and
Fureby
,
C.
,
2010
, “
Large-Eddy Simulation: Current Capabilities, Recommended Practices, and Future Research
,”
AIAA J.
,
48
(
8
), pp.
1772
1784
.
32.
Fröhlich
,
J.
,
Mellen
,
C. P.
,
Rodi
,
W.
,
Temmerman
,
L.
, and
Leschziner
,
M. A.
,
2005
, “
Highly Resolved Large-Eddy Simulation of Separated Flow in a Channel With Streamwise Periodic Constrictions
,”
J. Fluid Mech.
,
526
, pp.
19
66
.
33.
Ayachit
,
U.
,
Bauer
,
A.
,
Geveci
,
B.
,
O’Leary
,
P.
,
Moreland
,
K.
,
Fabian
,
N.
, and
Mauldin
,
J.
,
2015
, “
ParaView Catalyst: Enabling In Situ Data Analysis and Visualization
,”
Proceedings of the First Workshop on In Situ Infrastructures for Enabling Extreme-Scale Analysis and Visualization
,
Austin, TX
,
Nov. 15–20
,
Association for Computing Machinery
, New York, NY.
34.
White Jr
,
K. P.
,
1997
, “
An Effective Truncation Heuristic for Bias Reduction in Simulation Output
,”
Simulation
,
69
(
6
), pp.
323
334
.
35.
Viskanta
,
R.
,
1993
, “
Heat Transfer to Impinging Isothermal Gas and Flame Jets
,”
Exp. Therm. Fluid Sci.
,
6
(
2
), pp.
111
134
.
36.
Stoy
,
R. L.
, and
Ben-Haim
,
Y.
,
1973
, “
Turbulent Jets in a Confined Crossflow
,”
ASME J. Fluids Eng.
,
95
(
4
), pp.
551
556
.
37.
Welch
,
P.
,
1967
, “
The Use of Fast Fourier Transform for the Estimation of Power Spectra: A Method Based on Time Averaging Over Short, Modified Periodograms
,”
IEEE Trans. Audio Electroacoust.
,
15
(
2
), pp.
70
73
.
38.
Hadžiabdić
,
M.
, and
Hanjalić
,
K.
,
2008
, “
Vortical Structures and Heat Transfer in a Round Impinging Jet
,”
J. Fluid Mech.
,
596
, pp.
221
260
.
39.
Towne
,
A.
,
Schmidt
,
O. T.
, and
Colonius
,
T.
,
2018
, “
Spectral Proper Orthogonal Decomposition and Its Relationship to Dynamic Mode Decomposition and Resolvent Analysis
,”
J. Fluid Mech.
,
847
, pp.
821
867
.
40.
Schmidt
,
O. T.
, and
Colonius
,
T.
,
2020
, “
Guide to Spectral Proper Orthogonal Decomposition
,”
AIAA J.
,
58
(
3
), pp.
1023
1033
.
41.
Mengaldo
,
G.
, and
Maulik
,
R.
,
2021
, “
PySPOD: A Python Package for Spectral Proper Orthogonal Decomposition (SPOD)
,”
J. Open Source Softw.
,
6
(
60
), p.
2862
.
42.
Fric
,
T. F.
, and
Roshko
,
A.
,
1994
, “
Vortical Structure in the Wake of a Transverse Jet
,”
J. Fluid Mech.
,
279
, pp.
1
47
.
43.
Weiss
,
J.
,
2019
, “
A Tutorial on the Proper Orthogonal Decomposition
,”
AIAA Aviation 2019 Forum
,
Dallas, TX
,
June 17–21
.
You do not currently have access to this content.