Graphical Abstract Figure

Heat transfer coefficient on the strut of all test cases: (a) chordwise variation at midspan, (b) front view, (c) strut side I, (d) total pressure and velocity field at TCF inlet, (e) strut Side II

Graphical Abstract Figure

Heat transfer coefficient on the strut of all test cases: (a) chordwise variation at midspan, (b) front view, (c) strut side I, (d) total pressure and velocity field at TCF inlet, (e) strut Side II

Close modal

Abstract

This study focuses on the thermal impact of the clocking position of the high-pressure turbine (HPT) vanes with respect to the turbine center frame (TCF) struts and the thermal impact of the HPT outlet swirl. The TCF is a stationary duct equipped with nonturning airfoils (struts), and it connects the HPT to the low-pressure turbine (LPT). The heat transfer coefficient and the purge film cooling effectiveness are measured in an aggressive TCF for two turbine-strut clocking positions and two HPT outlet swirl levels. The measurements are carried out in a product-representative 1.5-stage HPT-TCF-LPT vane configuration under Mach similarity. The unshrouded HPT is fully purged with four individually adjustable purge flows, and the film cooling effectiveness of these purge flows in the downstream TCF is investigated. The biggest influence of turbine-strut clocking was found for the heat transfer coefficient on the struts. By clocking the HPT vanes by half a vane pitch from the thermally least to the most favorable position, a significant heat transfer reduction was achieved for both the nominal and the increased HPT outlet swirl. Increasing the HPT outlet swirl increased the flow incidence of the TCF struts and affected the heat transfer along the struts significantly. On the TCF hub, the averaged heat transfer coefficient and the averaged purge film cooling effectiveness responded relatively robustly to all imposed operating point deviations with differences of less than 2%. However, the effects on the local heat transfer and film cooling distributions on the hub were more significant.

References

1.
European Aviation Safety Agency. and EAA
,
2019
, “
European Aviation Environmental: Report 2019
,” Publications Office, LU, Online, https://data.europa.eu/doi/10.2822/309946, Accessed September 9, 2022.
2.
European Commission, Directorate General for Research and Innovation and European Commission, Directorate General for Mobility and Transport
,
2011
, “
Flightpath 2050: Europe’s Vision for Aviation: Maintaining Global Leadership and Serving Society’s Needs
,” Publications Office, LU, Online, https://data.europa.eu/doi/10.2777/50266, Accessed September 9, 2022.
3.
Alcock
,
C.
, “
GE Finalizes New Composite for 9X Fan Blades
,” Aviation International News, Online, https://www.ainonline.com/aviation-news/2014-08-26/ge-finalizes-new-composite-9x-fan-blades, Accessed September 14, 2022.
4.
Göttlich
,
E.
,
2011
, “
Research on the Aerodynamics of Intermediate Turbine Diffusers
,”
Prog. Aerosp. Sci.
,
47
(
4
), pp.
249
279
.
5.
Zerobin
,
S.
,
Aldrian
,
C.
,
Peters
,
A.
,
Heitmeir
,
F.
, and
Göttlich
,
E.
,
2017
, “
Impact of Individual High-Pressure Turbine Rotor Purge Flows on Turbine Center Frame Aerodynamics
,”
Volume 2A: Turbomachinery
,
Charlotte, NC
,
June 26–30
.
6.
Zerobin
,
S.
,
Peters
,
A.
,
Bauinger
,
S.
,
Ramesh
,
A.
,
Steiner
,
M.
,
Heitmeir
,
F.
, and
Göttlich
,
E.
,
2017
, “
The Behavior of Turbine Center Frames Under the Presence of Purge Flows
,”
Volume 2A: Turbomachinery
,
Charlotte, NC
,
June 26–30
.
7.
Patinios
,
M.
,
Merli
,
F.
,
Hafizovic
,
A.
, and
Göttlich
,
E.
,
2021
, “
The Interaction of Purge Flows With Secondary Flow Features in Turbine Center Frames
,”
Volume 2C: Turbomachinery—Design Methods and CFD Modeling for Turbomachinery; Ducts, Noise, and Component Interactions
,
Virtual
,
June 7–11
.
8.
Sterzinger
,
P. Z.
,
Merli
,
F.
,
Peters
,
A.
,
Behre
,
S.
,
Heitmeir
,
F.
, and
Göttlich
,
E.
,
2021
, “
Impact of Turbine-Strut Clocking on the Performance of a Turbine Center Frame
,”
ASME J. Turbomach.
,
143
(
5
), p.
051011
.
9.
Arroyo Osso
,
C.
,
Gunnar Johansson
,
T.
, and
Wallin
,
F.
,
2012
, “
Experimental Heat Transfer Investigation of an Aggressive Intermediate Turbine Duct
,”
ASME J. Turbomach.
,
134
(
5
), p.
051026
.
10.
Jagerhofer
,
P. R.
,
Patinios
,
M.
,
Erlacher
,
G.
,
Glasenapp
,
T.
,
Göttlich
,
E.
, and
Farisco
,
F.
,
2021
, “
A Sector-Cascade Test Rig for Measurements of Heat Transfer in Turbine Center Frames
,”
ASME J. Turbomach.
,
143
(
7
), p.
071015
.
11.
Jagerhofer
,
P. R.
,
Patinios
,
M.
,
Glasenapp
,
T.
,
Göttlich
,
E.
, and
Farisco
,
F.
,
2022
, “
The Influence of Purge Flow Parameters on Heat Transfer and Film Cooling in Turbine Center Frames
,”
ASME J. Turbomach.
,
144
(
7
), p.
071001
.
12.
Jagerhofer
,
P. R.
,
Woisetschläger
,
J.
,
Erlacher
,
G.
, and
Göttlich
,
E.
,
2021
, “
Heat Transfer and Film Cooling Measurements on Aerodynamic Geometries Relevant for Turbomachinery
,”
SN Appl. Sci.
,
3
(
12
), p.
889
.
13.
Jagerhofer
,
P. R.
,
Glasenapp
,
T.
,
Patzer
,
B.
, and
Goettlich
,
E.
,
2023
, “
Heat Transfer and Film Cooling in an Aggressive Turbine Center Frame
,”
ASME J. Turbomach.
,
145
(
12
), p.
121012
.
14.
Sinha
,
A. K.
,
Bogard
,
D. G.
, and
Crawford
,
M. E.
,
1991
, “
Film-Cooling Effectiveness Downstream of a Single Row of Holes With Variable Density Ratio
,”
ASME J. Turbomach.
,
113
(
3
), pp.
442
449
.
15.
Bogard
,
D. G.
, and
Thole
,
K. A.
,
2006
, “
Gas Turbine Film Cooling
,”
J. Propul. Power
,
22
(
2
), pp.
249
270
.
16.
Ito
,
S.
,
Goldstein
,
R. J.
, and
Eckert
,
E. R. G.
,
1978
, “
Film Cooling of a Gas Turbine Blade
,”
ASME J. Eng. Power
,
100
(
3
), pp.
476
481
.
17.
Billiard
,
N.
,
Paniagua
,
G.
, and
Dénos
,
R.
,
2005
, “
Effect of Clocking on the Heat Transfer Distribution of a Second Stator Tested in a One and a Half Stage HP Turbine
,”
ASME Volume 6: Turbo Expo 2005, Parts A and B
,
Reno, NV,
,
June 6–9
.
18.
Johansson
,
M.
,
Povey
,
T.
,
Chana
,
K.
, and
Abrahamsson
,
H.
,
2017
, “
Effect of Low-NOX Combustor Swirl Clocking on Intermediate Turbine Duct Vane Aerodynamics With an Upstream High Pressure Turbine Stage—An Experimental and Computational Study
,”
ASME J. Turbomach.
,
139
(
1
), p.
011006
.
19.
Johansson
,
M.
,
Mårtensson
,
J.
,
Abrahamsson
,
H.
,
Povey
,
T.
, and
Chana
,
K.
,
2015
, “
Aerothermal Measurements and Predictions of an Intermediate Turbine Duct Turning Vane
,”
ASME Volume 2B: Turbomachinery
,
Montreal, Quebec, Canada
,
June 15–19
.
20.
Arroyo Osso
,
C.
,
Wallin
,
F.
, and
Johansson
,
T. G.
,
2008
, “
Experimental and Numerical Investigation of an Aggressive Intermediate Turbine Duct: Part 2—Flowfield Under Off-Design Inlet Conditions
,”
26th AIAA Applied Aerodynamics Conference
,
Honolulu, HI
,
Aug. 18–21
.
21.
Erhard
,
J.
, and
Gehrer
,
A.
,
2000
, “
Design and Construction of a Transonic Test-Turbine Facility
,”
ASME Volume 1: Aircraft Engine; Marine; Turbomachinery; Microturbines and Small Turbomachinery
,
Munich, Germany
,
May 8–11
.
22.
Neumayer
,
F.
,
Kulhanek
,
G.
,
Pirker
,
H.-P.
,
Jericha
,
H.
,
Seyr
,
A.
, and
Sanz
,
W.
,
2014
,
Operational Behavior of a Complex Transonic Test Turbine Facility
,
American Society of Mechanical Engineers Digital Collection
.
23.
Faustmann
,
C.
, and
Göttlich
,
E.
,
2014
, “
Aerodynamics and Acoustics of Turning Mid Turbine Frames in a Two-Shaft Test Turbine
,”
ASME Volume 2C: Turbomachinery
,
Düsseldorf, Germany
,
June 16–20
.
24.
McNamara
,
L. J.
,
2019
, “
Scaling Film Cooling Adiabatic Effectiveness With Mass Transfer and Thermal Experimental Techniques
,”
Master’s thesis
,
Air Force Institute of Technology
,
Wright-Patterson AFB, OH
,
Online, https://apps.dtic.mil/sti/citations/AD1073903, Accessed January 1, 2024
.
25.
Sellers
,
J. P.
,
1963
, “
Gaseous Film Cooling With Multiple Injection Stations
,”
AIAA J.
,
1
(
9
), pp.
2154
2156
.
26.
JCGM/WG1
,
2008
, “Evaluation of Measurement Data—Guide to the Expression of Uncertainty in Measurement, JCGM 100:2008,” Online, https://www.bipm.org/documents/20126/2071204/JCGM_100_2008_E.pdf/cb0ef43f-baa5-11cf-3f85-4dcd86f77bd6, Accessed November 3, 2022.
27.
Gregory-Smith
,
D. G.
,
Graves
,
C. P.
, and
Walsh
,
J. A.
,
1988
, “
Growth of Secondary Losses and Vorticity in an Axial Turbine Cascade
,”
ASME J. Turbomach.
,
110
(
1
), pp.
1
8
.
28.
Çengel
,
Y. A.
, and
Ghajar
,
A. J.
,
2015
,
Heat and Mass Transfer: Fundamentals & Applications
,
McGraw Hill Education
,
New York
.
29.
Sibson
,
R.
,
1981
, “A Brief Description of Natural Neighbour Interpolation,”
Interpreting Multivariate Data
,
V.
Barnett
, ed.
John Wiley & Sons
,
New York
, pp.
21
36
.
You do not currently have access to this content.