Abstract

Under the prism of introducing pioneering technologies in the propulsive field, the rotating detonation engine (RDE) continuously attracts the gas turbine (GT) research community. However, how to effectively couple an RDE with high-pressure turbine (HPT) stages is still debated. In fact, time-dependent flow conditions from the RDE greatly affect turbine performance, thus reducing the positive impact of pressure gain combustion (PGC) on the overall cycle efficiency. The present numerical work aims at analyzing both the impact of a pulsating inflow on the performance of a newly designed high-pressure turbine vane and the effectiveness of a flow control system in governing the oscillations within the vane passage. First, a baseline vane capable of ingesting high enthalpy flow at an inlet Mach number of 0.6 is introduced. A total number of 297 samples are generated by varying the 18 geometrical parameters that characterize the vane’s endwalls and airfoil profile with the help of a Latin hypercube sampling method. An optimization strategy is then performed under steady inflow conditions to minimize the vane’s loss coefficient, thereby determining the final geometry of the new vane. In the second part of the work, a flow control system is proposed by placing a series of holes in the endwalls of the vane. Air at constant stagnation conditions is injected upstream of the vane’s leading edge. Unsteady calculations with and without flow control, including similar pulsating conditions from the RDE, provide an insight into the generation and evolution of the secondary flow structures inside the passage. The main outcome of this analysis is that the flow control system intensifies the passage vortices providing less oscillating flow at the vane exit section, which is beneficial for the aerodynamic performance of a subsequent blade row.

References

1.
Perkins
,
H. D.
, and
Paxson
,
D. E.
,
2018
, “Summary of Pressure Gain Combustion Research at NASA,” Technical Report, NASA/TM-2018-219874, April.
2.
Glassman
,
I.
,
Yetter
,
R. A.
, and
Glumac
,
N. G.
,
2015
, “
Flame Phenomena in Premixed Combustible Gases
,”
Combustion
, 5th ed.,
Academic Press
,
Waltham, MA
, pp.
147
254
.
3.
Heiser
,
W. H.
, and
Pratt
,
D. T.
,
2002
, “
Thermodynamic Cycle Analysis of Pulse Detonation Engines
,”
J. Propul. Power
,
18
(
1
), pp.
68
76
.
4.
Stathopoulos
,
P.
,
Vinkeloe
,
J.
, and
Paschereit
,
C. O.
,
2015
, “
Thermodynamic Evaluation of Constant Volume Combustion for Gas Turbine Power Cycles
,”
Numerical Set Updings of the 11th International Gas Turbine Congress
,
Tokyo, Japan
,
Nov. 15–20
, pp.
15
20
.
5.
Hishida
,
M.
,
Fujiwara
,
T.
, and
Wolanski
,
P.
,
2009
, “
Fundamentals of Rotating Detonations
,”
Shock Waves
,
19
(
1
), pp.
1
10
.
6.
Lu
,
F. K.
, and
Braun
,
E. M.
,
2014
, “
Rotating Detonation Wave Propulsion: Experimental Challenges, Modeling, and Engine Concepts
,”
J. Propul. Power
,
30
(
5
), pp.
1125
1142
.
7.
Rankin
,
B. A.
,
Fotia
,
M. L.
,
Naples
,
A. G.
,
Stevens
,
C. A.
,
Hoke
,
J. L.
,
Kaemming
,
T. A.
,
Theuerkauf
,
S. W.
, and
Schauer
,
F. R.
,
2017
, “
Overview of Performance, Application, and Analysis of Rotating Detonation Engine Technologies
,”
J. Propul. Power
,
33
(
1
), pp.
131
143
.
8.
Sousa
,
J.
,
Paniagua
,
G.
, and
Collado Morata
,
E.
,
2017
, “
Thermodynamic Analysis of a Gas Turbine Engine With a Rotating Detonation Combustor
,”
Appl. Energy
,
195
, pp.
247
256
.
9.
Schwer
,
D.
, and
Kailasanath
,
K.
,
2010
, “
Numerical Investigation of Rotating Detonation Engines
,”
46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit
,
Nashville, TN
,
July 25–28
,
American Institute of Aeronautics and Astronautics
. https://arc.aiaa.org/doi/10.2514/6.2010-6880
10.
Schwer
,
D. A.
,
Brophy
,
C. M.
, and
Kelso
,
R. H.
,
2018
, “
Pressure Characteristics of an Aerospike Nozzle in a Rotating Detonation Engine
,”
2018 Joint Propulsion Conference
,
Cincinnati, OH
,
July 9–11
,
American Institute of Aeronautics and Astronautics
. https://arc.aiaa.org/doi/10.2514/6.2018-4968
11.
Liu
,
Z.
,
Braun
,
J.
, and
Paniagua
,
G.
,
2018
, “
Characterization of a Supersonic Turbine Downstream of a Rotating Detonation Combustor
,”
ASME J. Eng. Gas Turbines Power
,
141
(
3
), p.
031501
.
12.
Naples
,
A.
,
Hoke
,
J.
,
Battelle
,
R.
, and
Schauer
,
F.
,
2019
, “
T63 Turbine Response to Rotating Detonation Combustor Exhaust Flow
,”
ASME J. Eng. Gas Turbines Power
,
141
(
2
), p.
021029
.
13.
Zhou
,
S.
,
Ma
,
H.
,
Li
,
S.
,
Liu
,
D.
,
Yan
,
Y.
, and
Zhou
,
C.
,
2017
, “
Effects of a Turbine Guide Vane on Hydrogen-Air Rotating Detonation Wave Propagation Characteristics
,”
Int. J. Hydrogen Energy
,
42
(
31
), pp.
20297
20305
.
14.
Wei
,
W.-l.
,
Wu
,
Y.-W.
,
Weng
,
C.-S.
, and
Zheng
,
Q.
,
2021
, “
Influence of Propagation Direction on Operation Performance of Rotating Detonation Combustor With Turbine Guide Vane
,”
Def. Technol.
,
17
(
5
), pp.
1617
1624
.
15.
Wu
,
Y.
,
Weng
,
C.
,
Zheng
,
Q.
,
Wei
,
W.
, and
Bai
,
Q.
,
2021
, “
Experimental Research on the Performance of a Rotating Detonation Combustor With a Turbine Guide Vane
,”
Energy
,
218
(
5
), p.
119580
.
16.
Bach
,
E.
,
Paschereit
,
C. O.
,
Stathopoulos
,
P.
, and
Bohon
,
M. D.
,
2021
, “
Rotating Detonation Wave Direction and the Influence of Nozzle Guide Vane Inclination
,”
AIAA J.
,
59
(
12
), pp.
5276
5287
.
17.
Paniagua
,
G.
,
Iorio
,
M.
,
Vinha
,
N.
, and
Sousa
,
J.
,
2014
, “
Design and Analysis of Pioneering High Supersonic Axial Turbines
,”
Int. J. Mech. Sci.
,
89
, pp.
65
77
.
18.
Asli
,
M.
,
Stathopoulos
,
P.
, and
Paschereit
,
C. O.
,
2021
, “
Aerodynamic Investigation of Guide Vane Configurations Downstream a Rotating Detonation Combustor
,”
ASME J. Eng. Gas Turbines Power
,
143
(
6
), p.
061011
.
19.
Liu
,
Z.
,
Braun
,
J.
, and
Paniagua
,
G.
,
2023
, “
Integration of a Transonic High-Pressure Turbine With a Rotating Detonation Combustor and a Diffuser
,”
Int. J. Turbo Jet Engines
,
40
(
1
), pp.
1
10
.
20.
Liu
,
Z.
,
Braun
,
J.
, and
Paniagua
,
G.
,
2017
, “
Performance of Axial Turbines Exposed to Large Fluctuations
,”
53rd AIAA/SAE/ASEE Joint Propulsion Conference
,
Atlanta, GA
,
July 10–12
,
American Institute of Aeronautics and Astronautics
. https://arc.aiaa.org/doi/10.2514/6.2017-4817
21.
Liu
,
Z.
,
Braun
,
J.
, and
Paniagua
,
G.
,
2020
, “
Thermal Power Plant Upgrade Via a Rotating Detonation Combustor and Retrofitted Turbine With Optimized Endwalls
,”
Int. J. Mech. Sci.
,
188
, p.
105918
.
22.
Grasa
,
S.
, and
Paniagua
,
G.
,
2024
, “
Design, Multi-Point Optimization and Analysis of Diffusive Stator Vanes to Enable Turbine Integration Into Rotating Detonation Engines
,”
ASME J. Turbomach.
,
146
(
11
), p.
111002
.
23.
Dénos
,
R.
,
Sieverding
,
C. H.
,
Arts
,
T.
,
Brouckaert
,
J. F.
,
Paniagua
,
G.
, and
Michelassi
,
V.
,
1999
, “
Experimental Investigation of the Unsteady Rotor Aerodynamics of a Transonic Turbine Stage
,”
Proc. Inst. Mech. Eng. Part A: J. Power Energy
,
213
(
4
), pp.
327
338
.
24.
Ayancik
,
F.
,
Acar
,
E.
,
Celebioglu
,
K.
, and
Aradag
,
S.
,
2016
, “
Simulation-Based Design and Optimization of Francis Turbine Runners by Using Multiple Types of Metamodels
,”
Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci.
,
231
(
8
), pp.
1427
1444
.
25.
Roache
,
P. J.
,
1998
, “
Verification of Codes and Calculations
,”
AIAA J.
,
36
(
5
), pp.
696
702
.
26.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.
27.
Gallis
,
P.
,
Misul
,
D. A.
,
Bellenoue
,
M.
,
Boust
,
B.
, and
Salvadori
,
S.
,
2024
, “
Development of 1d Model of Constant-Volume Combustor and Numerical Analysis of the Exhaust Nozzle
,”
Energies
,
17
(
5
), p.
1191
.
28.
Cumpsty
,
N. A.
, and
Horlock
,
J. H.
,
2005
, “
Averaging Nonuniform Flow for a Purpose
,”
J. Turbomach.
,
128
(
1
), pp.
120
129
.
29.
George
,
A. S.
,
Driscoll
,
R.
,
Gutmark
,
E.
, and
Munday
,
D.
,
2014
, “
Experimental Comparison of Axial Turbine Performance Under Steady and Pulsating Flows
,”
ASME J. Turbomach.
,
136
(
11
), p.
111005
.
30.
Xisto
,
C.
,
Petit
,
O.
,
Grönstedt
,
T.
,
Rolt
,
A.
,
Lundbladh
,
A.
, and
Paniagua
,
G.
,
2018
, “
The Efficiency of a Pulsed Detonation Combustor–Axial Turbine Integration
,”
Aerosp. Sci. Technol.
,
82–83
, pp.
80
91
.
31.
Suresh
,
A.
,
Hofer
,
D. C.
, and
Tangirala
,
V. E.
,
2011
, “
Turbine Efficiency for Unsteady, Periodic Flows
,”
J. Turbomach.
,
134
(
3
), p.
034501
.
32.
Young
,
J. B.
, and
Horlock
,
J. H.
,
2006
, “
Defining the Efficiency of a Cooled Turbine
,”
ASME J. Turbomach.
,
128
(
4
), pp.
658
667
.
33.
Aungier
,
R. H.
,
2006
,
Turbine Aerodynamics: Axial-Flow and Radial-Flow Turbine Design and Analysis
,
ASME Press
,
New York
, pp.
61
91
, Chapter
4
.
34.
Liu
,
Z.
,
Braun
,
J.
, and
Paniagua
,
G.
,
2020
, “
Integration of a Transonic High-Pressure Turbine With a Rotating Detonation Combustor and a Diffuser
,”
Int. J. Turbo Jet Engines
,
4
(
1
), pp.
1
10
.
35.
Paniagua
,
G.
,
Dénos
,
R.
, and
Almeida
,
S.
,
2004
, “
Effect of the Hub Endwall Cavity Flow on the Flow-Field of a Transonic High-Pressure Turbine
,”
ASME J. Turbomach.
,
126
(
4
), pp.
578
586
.
36.
Dénos
,
R.
,
Arts
,
T.
,
Paniagua
,
G.
,
Michelassi
,
V.
, and
Martelli
,
F.
,
2000
, “
Investigation of the Unsteady Rotor Aerodynamics in a Transonic Turbine Stage
,”
ASME J. Turbomach.
,
123
(
1
), pp.
81
89
.
You do not currently have access to this content.