Abstract

Compressor blade design has always faced the challenge of meeting the performance requirements of the compressor while keeping losses to a minimum. Over the past decades, a number of different airfoil types have been developed and grouped into methodologies. The best-known example of such a methodology is the NACA airfoil systematic, which is still the basis for many pre-design procedures. With the introduction of modern optimization methods and artificial intelligence approaches, the airfoil design changed to the development of customized blading. In the present study, a novel concept for highly-loaded compressor airfoils is developed using the DLR optimization method autoopti and the flow solver trace. The aim here is to combine customized airfoil design with a new design methodology. The new approach leads to a load-splitting airfoil (LSA) methodology. The concept behind this airfoil method is fundamentally presented in this study on the basis of the DLR-LSA cascade. The conventional NACA 65 K48 cascade was used to define the boundary conditions and requirements for the new cascade, since it is highly loaded and provides a wide basis of comparison for the evaluation of the new airfoil concept. The inflow Mach number is 0.67 and a working range of 10 deg is to be achieved, resulting in an extremely high aerodynamic load. Based on detailed numerical simulations, the concept of load redistribution by passive boundary layer energization is presented and described. This is followed by an experimental validation of the cascade in DLR’s transonic cascade wind tunnel (TGK). In addition to the details of the boundary layer development, the analysis also includes the evaluation of the classical performance parameters of a compressor cascade. The loss distribution, deflection, and deceleration behavior are determined over the entire operating range. The results of the experimental validation confirm the design and also the function of the load shifting approach. Finally, the performance of the novel compressor airfoil design is evaluated in comparison to the baseline NACA 65.

References

1.
Herrig
,
L. J.
,
Emery
,
J. C.
, and
Erwin
,
J. R.
,
1957
, “Systematic Two-Dimensional Cascade Tests of NACA 65-Series Compressor Blades at Low Speeds,” Technical Report TN-3916, NACA, February.
2.
Felix
,
R.
,
1957
, “Summary of 65-Series Compressor Blade Low-Speed Cascade Data by Use of the Carpet Plotting Technique,” Technical Report, NACA TN 3913.
3.
Emery
,
J. C.
,
Herrig
,
L. J.
,
Erwin
,
J. R.
, and
Felix
,
A. R.
,
1958
, “Systematic Two-Dimensional Cascade Tests of NACA 65-Series Compressor Blades at Low Speeds,” NACA Report 1368, NACA.
4.
Köller
,
U.
,
Mönig
,
R.
,
Küsters
,
B.
, and
Schreiber
,
H. A.
,
2000
, “
Development of Advanced Compressor Airfoils for Heavy-Duty Gas Turbines—Part I: Design and Optimization
,”
ASME J. Turbomach.
,
122
(
3
), pp.
397
405
.
5.
Küsters
,
B.
,
Schreiber
,
H. A.
,
Köller
,
U.
, and
Mönig
,
R.
,
2000
, “
Development of Advanced Compressor Airfoils for Heavy-Duty Gas Turbines - Part II: Experimental and Theoretical Analysis
,”
ASME J. Turbomach.
,
122
(
3
), pp.
406
415
.
6.
Zierke
,
W. C.
, and
Deutsch
,
S.
,
1989
, “The Measurement of Boundary Layers on a Compressor Blade in Cascade, Vol. I–Experimental Technique, Analysis, and Results,” Technical Report, NASA CR-185118.
7.
Hobbs
,
D. E.
, and
Weingold
,
H. D.
,
1984
, “
Development of Controlled Diffusion Airfoils for Multistage Compressor Application
,”
ASME J. Eng. Gas Turbines Power
,
106
(
2
), pp.
271
278
.
8.
Steinert
,
W.
, and
Starken
,
H.
,
1996
, “
Off-Design Transition and Separation Behavior of a CDA Cascade
,”
ASME J. Turbomach.
,
118
(
2
), pp.
204
210
.
9.
Benini
,
E.
,
2004
, “
Three-Dimensional Multi-objective Design Optimization of a Transonic Compressor Rotor
,”
J. Propul Power
,
20
(
3
), pp.
559
565
.
10.
Voss
,
C.
,
Aulich
,
M.
, and
Kaplan
,
B.
,
2006
, “Automated Multiobjective Optimisation in Axial Compressor Blade Design.” Paper No. GT2006-90420, ASME Turbo Expo.
11.
Munoz Lopez
,
E. J.
,
Hergt
,
A.
, and
Grund
,
S.
,
2022
, “The New Chapter of Transonic Compressor Cascade Design at the DLR.” Paper No. GT2022-80189, ASME Turbo Expo.
12.
Munoz Lopez
,
E. J.
,
Hergt
,
A.
,
Grund
,
S.
, and
Gümmer
,
V.
,
2023
, “
The New Chapter of Transonic Compressor Cascade Design at the DLR
,”
ASME J. Turbomach.
,
145
(
8
), p.
081001
.
13.
Sonoda
,
T.
,
Yamaguchi
,
Y.
,
Arima
,
T.
,
Olhofer
,
M.
,
Sendhoff
,
B.
, and
Schreiber
,
H. A.
,
2004
, “
Advanced High Turning Compressor Airfoils for Low Reynolds Number Condition—Part I: Design and Optimization
,”
ASME J. Turbomach.
,
126
(
3
), pp.
350
359
.
14.
Schreiber
,
H. A.
,
Steinert
,
W.
,
Sonoda
,
T.
, and
Arima
,
T.
,
2004
, “
Advanced High Turning Compressor Airfoils for Low Reynolds Number Condition-Part II: Experimetal and Numerical Analysis
,”
ASME J. Turbomach.
,
126
(
4
), pp.
482
492
.
15.
Hergt
,
A.
,
Steinert
,
W.
, and
Grund
,
S.
,
2013
, “Design and Experimental Investigation of a Compressor Cascade for Low Reynolds Number Conditions.” No. ISABE-2013-1104, 21st ISABE Conference.
16.
Hergt
,
A.
,
Hage
,
W.
,
Grund
,
S.
,
Steinert
,
W.
,
Terhorst
,
M.
,
Schongen
,
F.
, and
Wilke
,
Y.
,
2015
, “
Riblet Application in Compressors: Toward Efficient Blade Design
,”
ASME J. Turbomach.
,
137
(
11
), p.
111006
.
17.
Goodhand
,
M. N.
,
Miller
,
R. J.
, and
Lung
,
H. W.
,
2012
, “The Sensitivity of 2D Compressor Incidence Range to In-Service Geometrie Variation.” No. GT2012-68633 in ASME Turbo Expo.
18.
Goodhand
,
M. N.
, and
Miller
,
R. J.
,
2011
, “
Compressor Leading Edge Spikes: A New Performance Criterion
,”
ASME J. Turbomach.
,
133
(
2
), p.
021006
.
19.
Carter
,
A. D. S.
,
1961
, “
Blade Profiles for Axial Flow Fans, Pumps and Compressors Etc.
Proc. Inst. Mech. Eng.
,
175
(
15
), pp.
775
806
.
20.
Liu
,
Y.
,
Chen
,
J.
,
Cheng
,
J.
, and
Xiang
,
H.
,
2022
, “
Aerodynamic Optimization of Transonic Rotor Using Radialbasis Function Based Deformation and Data-Driven Differential Evolution Optimizer
,”
Aerospace
,
9
(
9
), p.
508
.
21.
John
,
A.
,
Shahpar
,
S.
, and
Qin
,
N.
,
2017
, “
Novel Compressor Bladeshaping Through a Free-Form Method
,”
ASME J. Turbomach.
,
139
(
8
), p.
081002
.
22.
Schreiber
,
H. A.
,
1986
, “
Experimental Investigation on Shock Losses of Transonic and Supersonic Compressor Cascades
,”
No. AGARD-CP-401 in Conference Proceedings for Transonic and Supersonic Phenomena in Turbomachines, AGARD
, pp.
11-1
-
11-15
.
23.
Tweedt
,
T. L.
,
Schreiber
,
H. A.
, and
Starken
,
H.
,
1988
, “Experimental Investigation of the Performance of a Supersonic Compressor Cascade.” No. 88-GT-306, ASME Turbo Expo.
24.
Lieblein
,
S.
,
Schwenk
,
F. C.
, and
Broderick
,
R. L.
,
1953
, Diffusion Factor for Estimating Losses and Limiting Blade Loading in Axial-Flow-Compressor Blade Elements. Research Memorandum RM E53D01, NACA.
25.
Schreiber
,
H. A.
, and
Starken
,
H.
,
1981
, “
On the Definition of the Axial Velocity Density Ratio in Theoretical and Experimental Cascade Investigation
,” Symposium on Measuring Techniques in Transonic and Supersonic Flow in Cascades and Turbomachines, Lyon, France, October 1981.
26.
Scheugenpflug
,
H.
,
1990
, “
Theoretische und experimentelle untersuchungen zur Reduzierung der randzonenverluste hochbelasteter axialverdichter durch grenzschichtbeeinflussung
,” Ph.D. thesis,
Universität Der Bundeswehr München
,
Neubiberg, Germany
.
27.
Sturm
,
W.
,
Scheugenpflug
,
H.
, and
Fottner
,
L.
,
1991
, “Performance Improvement of Compressor Cascades by Controlling the Profile and Sidewall Boundary Layer.” No. 91-GT-260, ASME Turbo Expo.
28.
Hübner
,
J.
,
1996
, “
Experimentelle und theoretische untersuchungen der wesentlichen einflussfaktoren auf die spalt- und sekundärströmung in verdichtergittern
,” Ph.D. thesis,
Universität Der Bundeswehr München
,
Neubiberg, Germany
.
29.
Schreiber
,
H. A.
, and
Starken
,
H.
,
1984
, “
Experimental Cascade Analysis of a Transonic Compressor Rotor Blade Section
,”
ASME J. Eng. Gas Turbines Power
,
106
(
2
), pp.
288
294
.
30.
Weber
,
A.
,
Faden
,
M.
,
Starken
,
H.
, and
Jawtusch
,
V.
,
1987
, “
Theoretical and Experimental Analysis of a Compressor Cascade at Supercritical Flow Conditions
,” Volume: ASME Gas Turbbine Conference and Exhibition, ASME 87-GT-256.
31.
Hergt
,
A.
, and
Siller
,
U.
,
2016
, “
About Subsonic Compressor Tandem Aerodynamics - A Fundamental Study
,” International Symposium on Transport Phenomena and Dynamics of Rotating Machinery, No. ISROMAC 148.
32.
Hergt
,
A.
,
Siller
,
U.
,
Grund
,
S.
,
Klinner
,
J.
,
Steinert
,
W.
, and
Beversdorff
,
M.
,
2019
, “
Some Aspects of Transonic Compressor Tandem Design
.” p.
091003
.
33.
Munoz Lopez
,
E. J.
,
Hergt
,
A.
,
Ockenfels
,
T.
,
Grund
,
S.
, and
Gümmer
,
V.
,
2023
, “
The Current Gap Between Design Optimization and Experiments for Transonic Compressor Blades
,”
Int. J. Turbomach. Propul. Power
,
8
(
4
), p.
47
.
34.
Reutter
,
O.
,
Rozanski
,
M.
,
Hergt
,
A.
, and
Nicke
,
E.
,
2017
, “
Advanced Endwall Contouring for Loss Reduction and Outflow Homogenization for an Optimized Compressor Cascade
,”
Int. J. Turbomach. Propuls. Power
,
2
(
1
), p.
1
.
35.
Drela
,
M.
, and
Youngren
,
H.
,
1991
, “Viscous/Inviscid Method for Preliminary Design of Transonic Cascades.” No. 91-2364, AIAA-Paper.
36.
Steinert
,
W.
,
Fuchs
,
R.
, and
Starken
,
H.
,
1992
, “
Inlet Flow Angle Determination of Transonic Compressor Cascade
,”
ASME J. Turbomach.
,
114
(
3
), pp.
487
493
.
37.
Schreiber
,
H. A.
,
Starken
,
H.
, and
Steinert
,
W.
,
1993
, “
Transonic and Supersonic Cascades
,”
AGARDOgraph - Advanced Methods for Cascade Testing
, AGARD AG 328, pp.
35
59
.
38.
Hergt
,
A.
,
Klinner
,
J.
,
Grund
,
S.
,
Willert
,
C.
,
Steinert
,
W.
, and
Beversdorff
,
M.
,
2021
, “
On the Importance of Transition Control at Transonic Compressor Blades
,”
ASME J. Turbomach.
,
143
(
3
), p.
031007
.
39.
Celik
,
I. B.
,
Ghia
,
U.
,
Roache
,
P. J.
,
Freitas
,
C. J.
,
Coleman
,
H.
, and
Raad
,
P. E.
,
2008
, “
Procedure for Estimation and Reporting of Uncertainty Due to Discretizationin Cfd Applications
,”
ASME J. Fluids Eng.
,
130
(
7
), p.
078001
.
40.
Cumpsty
,
N. A.
,
2004
,
Compressor Aerodynamics
,
Krieger Puplishing Company
,
Harlow, Essex, UK
.
You do not currently have access to this content.