Abstract

In aero-engines, the turbine entry temperature profile determines the characteristics of the cooling system, including the flow field occurring in the cavity positioned between the stator rim and the rotor platform, which is used to provide end-wall cooling while ensuring no flow ingestion to prevent harmful configurations. The local flow field depends on the relative position between the blade rows, on the geometry of the cavity, on the rotational speed, and on the mass flow. The flow structures within the cavity may be described by high-fidelity simulations, which are still too onerous at engine-relevant conditions. However, unsteady Reynolds-averaged Navier–Stokes solvers provide information about integral-scale structure development and interaction. In this article, the results obtained from three unsteady simulations of a high-pressure turbine stage considering different cavity flowrates and rotational speeds are presented. The comparison between the experimental data obtained at the von Karman Institute for Fluid Dynamics, and the numerical results allows for analyzing the interaction between the cavity flow and the main flow. Pressure and velocity fields are analyzed to describe both the sealing mechanism and the formation of secondary flows in the presence of secondary air. It is demonstrated that the occurrence of ingestion regions depends on the potential interaction between the vanes and the blades and that the wake shed by the vane trailing edge determines the intensity of the phenomena. The secondary flows’ analysis shows that the purge flow exiting the cavity impacts the arrangement and strength of the hub-passage vortex.

References

1.
Johnson
,
B. V.
,
Mack
,
G. J.
,
Paolillo
,
R. E.
, and
Daniels
,
W. A.
,
1994
, “
Turbine Rim Seal Gas Path Flow Ingestion Mechanisms
,” AIAA Paper No. 94-2703.
2.
Popović
,
I.
, and
Hodson
,
H. P.
,
2013
, “
The Effects of a Parametric Variation of the Rim Seal Geometry on the Interaction Between Hub Leakage and Mainstream Flows in High Pressure Turbines
,”
ASME J. Eng. Gas Turbines Power
,
135
(
11
), p.
112501
.
3.
Popović
,
I.
, and
Hodson
,
H. P.
,
2010
, “
Aerothermal Impact of the Interaction Between Hub Leakage and Mainstream Flows in Highly-Loaded HP Turbine Blades
,”
ASME J. Eng. Gas Turbines Power
,
135
(
6
), p.
061014
.
4.
McLean
,
C.
,
Camci
,
C.
, and
Glezer
,
B.
,
2001
, “
Mainstream Aerodynamic Effects Due to Wheelspace Coolant Injection in a High-Pressure Turbine Stage: Part I—Aerodynamic Measurements in the Stationary Frame
,”
ASME J. Turbomach.
,
123
(
4
), pp.
687
696
.
5.
Phadke
,
U. P.
, and
Owen
,
J. M.
,
1988
, “
Aerodynamic Aspects of the Sealing of Gas-Turbine Rotor-Stator Systems—Part 2: The Performance of Seals in a Quasiaxisymmetric External Flow
,”
Int. J. Heat Fluid Flow
,
9
(
2
), pp.
106
112
.
6.
Roy
,
R. P.
,
Xu
,
G.
,
Feng
,
J.
, and
Kang
,
S.
,
2001
, “
Pressure Field and Main Stream Gas Ingestion in a Rotor Stator Disc Cavity
,”
Proceedings of ASME Turbo Expo 2001: Power for Land, Sea, and Air
,
New Orleans, LA
,
June 4–7
, ASME Paper No. 2001-GT-564.
7.
Cao
,
C.
,
Chew
,
J. W.
,
Millington
,
P. R.
, and
Hogg
,
S. I.
,
2004
, “
Interaction of Rim Seal and Annulus Flows in an Axial Flow Turbine
,”
ASME J. Eng. Gas Turbines Power
,
126
(
4
), pp.
786
793
.
8.
Sangan
,
C. M.
,
Lalwani
,
Y.
,
Owen
,
J. M.
, and
Lock
,
G. D.
,
2014
, “
Fluid Dynamics of a Gas Turbine Wheel-Space With Ingestion
,”
Proc. Inst. Mech. Eng., Part A
,
228
(
5
), pp.
508
524
.
9.
Scobie
,
J. A.
,
Sangan
,
C. M.
,
Owen
,
J. M.
,
Wilson
,
M.
, and
Lock
,
G. D.
,
2014
, “
Experimental Measurements of Hot Gas Ingestion Through Turbine Rim Seals at Off-Design Conditions
,”
Proc. Inst. Mech. Eng., Part A
,
228
(
5
), pp.
491
507
.
10.
Cho
,
G.
,
Sangan
,
C. M.
,
Owen
,
J. M.
, and
Lock
,
G. D.
,
2015
, “
Effect of Ingress on Turbine Disks
,”
ASME J. Eng. Gas Turbines Power
,
138
(
4
), p.
042502
.
11.
Gentilhomme
,
O.
,
Hills
,
N. J.
,
Turner
,
A. B.
, and
Chew
,
J. W.
,
2002
, “
Measurement and Analysis of Ingestion Through a Rim Seal
,”
ASME J. Turbomach.
,
125
(
3
), pp.
505
512
.
12.
Da Soghe
,
R.
,
Bianchini
,
C.
,
Mazzei
,
L.
,
Bonini
,
A.
,
Innocenti
,
L.
,
Di Benedetto
,
D.
, and
Orsini
,
L.
,
2021
, “
On the Extrapolation of Rim Sealing Performance From Test Bench to Real Engine: A Numerical Survey
,”
ASME J. Eng. Gas Turbines Power
,
144
(
4
), p.
041001
.
13.
Hills
,
N. J.
,
Chew
,
J. W.
, and
Turner
,
A. B.
,
2002
, “
Computational and Mathematical Modelling of Turbine Rim Seal Ingestion
,”
ASME J. Turbomach.
,
124
(
2
), pp.
306
315
.
14.
Ko
,
S. H.
, and
Rhode
,
D. L.
,
1992
, “
Thermal Details in a Rotor–Stator Cavity at Engine Conditions With a Mainstream
,”
ASME J. Turbomach.
,
114
(
2
), pp.
446
453
.
15.
Laroche
,
E.
,
Desportes
,
S.
,
Djaoui
,
M.
,
Debuchy
,
R.
, and
Paté
,
L.
,
1999
, “
A Combined Experimental and Numerical Investigation of the Flow in a Heated Rotor/Stator Cavity, With a Radial Inflow
,”
Proceedings of the ASME 1999 International Gas Turbine and Aeroengine Congress and Exhibition
,
Indianapolis, IN
,
June 7–10
.
16.
Bohn
,
D.
,
Deuker
,
E.
,
Emunds
,
R.
, and
Gorzelitz
,
V.
,
1995
, “
Experimental and Theoretical Investigations of Heat Transfer in Closed Gas Filled Rotating Annuli
,”
ASME J. Turbomach.
,
117
(
1
), pp.
175
183
.
17.
Horwood
,
J.
,
Hualca
,
F.
,
Scobie
,
J.
,
Wilson
,
M.
,
Sangan
,
C.
, and
Lock
,
G.
,
2018
, “
Experimental and Computational Investigation of Flow Instabilities in Turbine Rim Seals
,”
ASME J. Eng. Gas Turbines Power
,
141
(
1
), p.
011028
.
18.
Horwood
,
J. T.
,
Hualca
,
F. P.
,
Wilson
,
M.
,
Scobie
,
J. A.
,
Sangan
,
C. M.
,
Lock
,
G. D.
,
Dahlqvist
,
J.
, and
Fridh
,
J.
,
2020
, “
Flow Instabilities in Gas Turbine Chute Seals
,”
ASME J. Eng. Gas Turbines Power
,
142
(
2
), p.
021019
.
19.
Rabs
,
M.
,
Benra
,
F.-K.
,
Dohmen
,
H. J.
, and
Schneider
,
O.
,
2009
, “
Investigation of Flow Instabilities Near the Rim Cavity of a 1.5 Stage Gas Turbine
,”
Proceedings of ASME Turbo Expo 2009: Power for Land, Sea, and Air
,
Orlando, FL
,
June 8–12
.
20.
Hunter
,
S. D.
, and
Manwaring
,
S. R.
,
2000
, “
Endwall Cavity Flow Effects on Gaspath Aerodynamics in an Axial Flow Turbine: Part 1: Experimental and Numerical Investigation
,”
Proceedings of ASME Turbo Expo 2000: Power for Land, Sea, and Air
,
Munich, Germany
,
May 8–11
.
21.
Paniagua
,
G.
,
Dénos
,
R.
, and
Almeida
,
S.
,
2004
, “
Effect of the Hub Endwall Cavity Flow on the Flow-Field of a Transonic High-Pressure Turbine
,”
ASME J. Turbomach.
,
126
(
4
), pp.
578
586
.
22.
Lopes
,
G.
,
Simonassi
,
L.
, and
Lavagnoli
,
S.
,
2023
, “
Time-Averaged Aerodynamics of a High-Speed Low-Pressure Turbine Cascade With Cavity Purge and Unsteady Wakes
,”
ASME J. Turbomach.
,
146
(
2
), p.
021008
.
23.
Vella
,
S.
,
Darby
,
P.
,
Carnevale
,
M.
,
Scobie
,
J. A.
,
Lock
,
G. D.
,
Jarrossay
,
C.
,
Salvatori
,
F.
,
Bonneau
,
D.
, and
Sangan
,
C. M.
,
2024
, “
A Combined Experimental and Turbulence-Resolved Modeling Approach for Aeroengine Turbine Rim Seals
,”
ASME J. Eng. Gas Turbines Power
,
146
(
8
), p.
081020
.
24.
Jagerhofer
,
P. R.
,
Patinios
,
M.
,
Erlacher
,
G.
,
Glasenapp
,
T.
,
Göttlich
,
E.
, and
Farisco
,
F.
,
2021
, “
A Sector-Cascade Test Rig for Measurements of Heat Transfer in Turbine Center Frames
,”
ASME J. Turbomach.
,
143
(
7
), p.
071015
.
25.
Pau
,
M.
,
Paniagua
,
G.
,
Delhaye
,
D.
,
de la Loma
,
A.
, and
Ginibre
,
P.
,
2010
, “
Aerothermal Impact of Stator-Rim Purge Flow and Rotor-Platform Film Cooling on a Transonic Turbine Stage
,”
ASME J. Turbomach.
,
132
(
2
), p.
021006
.
26.
Sieverding
,
C. H.
,
Arts
,
T.
,
Dénos
,
R.
, and
Martelli
,
F.
,
1996
, “
Investigation of the Flow Field Downstream of a Turbine Trailing Edge Cooled Nozzle Guide Vane
,”
ASME J. Turbomach.
,
118
(
2
), pp.
291
300
.
27.
Rai
,
M. M.
, and
Madavan
,
N. K.
,
1990
, “
Multi-airfoil Navier-Stokes Simulations of Turbine Rotor-Stator Interaction
,”
ASME J. Turbomach.
,
112
(
3
), pp.
377
384
.
28.
Dawes
,
W. N.
,
1992
, “
The Simulation of Three-Dimensional Viscous Flow in Turbomachinery Geometries Using a Solution-Adaptive Unstructured Mesh Methodology
,”
ASME J. Turbomach.
,
114
(
3
), pp.
528
537
.
29.
Arnone
,
A.
, and
Pacciani
,
R.
,
1996
, “
Rotor-Stator Interaction Analysis Using the Navier-Stokes Equations and a Multigrid Method
,”
ASME J. Turbomach.
,
118
(
4
), pp.
679
689
.
30.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.
31.
Roache
,
P. J.
,
1994
, “
A Method for Uniform Reporting of Grid Refinement Studies
,”
ASME J. Fluids Eng.
,
116
(
3
), pp.
405
413
.
32.
Popp
,
O.
,
Smith
,
D. E.
,
Bubb
,
J. V.
,
Grabowski
,
H.
, III
,
Diller
,
T. E.
,
Schetz
,
J. A.
, and
Ng
,
W. F.
,
1999
, “
Steady and Unsteady Heat Transfer in a Transonic Film Cooled Turbine Cascade
,”
Proceedings of ASME 1999 International Gas Turbine and Aeroengine Congress and Exhibition
,
Indianapolis, IN
,
June 7–10
, ASME Paper No. 99-GT-259.
33.
Suryanarayanan
,
A.
,
Ozturk
,
B.
,
Schobeiri
,
M. T.
, and
Han
,
J. C.
,
2010
, “
Film-Cooling Effectiveness on a Rotating Turbine Platform Using Pressure Sensitive Paint Technique
,”
ASME J. Turbomach.
,
132
(
4
), p.
041001
.
You do not currently have access to this content.