Abstract

Engine icing threatens compressor operation and service life. Ice crystal ingestion at cruise and descent flight phases results in smaller, partially melted crystals entering the engine core. Here, crystals stick to stationary surfaces driven by the presence of a water film. Modeling of ice crystal conditions is needed to understand threat areas within the core operating envelope. A particle transport model in three dimensions combining tracking, heat transfer, and phase change along with a turbophoresis model is presented for nonspherical mixed-phase ice crystals. Furthermore, crystals can fragment, melt, and agglomerate along the gas path. This affects heat transfer, phase change, and ice porosity which will implicate the deposition location and composition. The model is validated against previous altitude icing wind tunnel experiments at compressor operating conditions. Particle advection is modeled using an Euler–Lagrangian approach with two-way mass-energy coupling. Particle turbophoresis is modeled using a discrete random walk approach. The model is seen to predict particle cloud mass distribution to within 15% of the experimentally measured total water content. Particle melting is investigated relative to particle size and aspect ratio. High aspect ratio particles result in 5–20% phase change augmentation depending on the particle angle of attack. Two-way coupling is shown to increase the melt ratio by up to 10% and reduce the total water content by up to 25% compared to one-way coupling. The model provides a framework for compressor stage ice particle transport and deposition in ice crystal icing conditions.

References

1.
Mason
,
J.
,
Strapp
,
W.
, and
Chow
,
P.
,
2006
, “
The Ice Particle Threat to Engines in Flight
,”
44th AIAA Aerospace Sciences Meeting and Exhibit
,
Reno, NV
,
Jan. 9–12
, p.
206
.
2.
Bravin
,
M.
,
Strapp
,
J. W.
, and
Mason
,
J.
,
2015
, “An Investigation Into Location and Convective Lifecycle Trends in an Ice Crystal Icing Engine Event Database,” SAE Technical Paper.
3.
Handle
,
P. H.
,
Loerting
,
T.
, and
Sciortino
,
F.
,
2017
, “
Supercooled and Glassy Water: Metastable Liquid(s), Amorphous Solid(s), and a No-Man’s Land
,”
Proc. Natl. Acad. Sci. USA
,
114
(
51
), pp.
13336
13344
.
4.
Coutris
,
P.
,
Schwarzenboeck
,
A.
,
Leroy
,
D.
,
Grandin
,
A.
,
Dezitter
,
F.
, and
Strapp
,
J. W.
,
2019
, “
Uncertainty of the Ice Particles Median Mass Diameters Retrieved From the HAIC-HIWC Dataset: A Study of the Influence of the Mass Retrieval Method
,”
SAE Int. J. Adv. Curr. Pract. Mob.
,
2
(
2019-01-1983
), pp.
140
150
.
5.
Leroy
,
D.
,
Fontaine
,
E.
,
Schwarzenboeck
,
A.
,
Strapp
,
J. W.
,
Korolev
,
A.
,
McFarquhar
,
G.
, and
Dupuy
,
R. E. A.
,
2017
, “
Ice Crystal Sizes in High Ice Water Content Clouds. Part II: Statistics of Mass Diameter Percentiles in Tropical Convection Observed During the HAIC/HIWC Project
,”
J. Atmos. Ocean. Technol.
,
34
(
1
), pp.
117
136
.
6.
The Engineering Toolbox
,
2003
, “
U.S. Standard Atmosphere: Temperature, Pressure, and Air Properties vs. Altitude
,” https://www.engineeringtoolbox.com/standard-atmosphere-d_604.html, Accessed November 7, 2023.
7.
Vowinckel
,
B.
,
2021
, “
Incorporating Grain-Scale Processes in Macroscopic Sediment Transport Models: A Review and Perspectives for Environmental and Geophysical Applications
,”
Acta Mech.
,
232
(
6
), pp.
2023
2050
.
8.
Elghobashi
,
S.
,
1994
, “
On Predicting Particle-Laden Turbulent Flows
,”
Appl. Sci. Res.
,
52
(
4
), pp.
309
329
.
9.
Fuleki
,
D.
,
Neuteboom
,
M.
, and
Chalmers
,
J.
,
2020
, “
Ice Crystal Icing Test Design and Execution for the ALF502 Vane Segment in the NRC RATFac Cascade Rig
,”
SAE International Journal of Advances and Current Practices in Mobility
,
2
(
1
), pp.
4
14
.
10.
Villedieu
,
Philippe
,
Trontin
,
Pierre
, and
Chauvin
,
Rémi
,
2014
, “
Glaciated and mixed phase ice accretion modeling using ONERA 2D icing suite
,”
6th AIAA Atmospheric and Space Environments Conference
,
Atlanta, GA
,
June 16–20
, p.
2199
.
11.
Bidwell
,
C.
,
2014
, “
Icing Analysis of a Swept NACA 0012 Wing Using LEWICE3D Version 3.48
,”
6th AIAA Atmospheric and Space Environments Conference
,
Atlanta, GA
,
June 16–20
, p.
2200
.
12.
Beaugendre
,
H.
,
Morency
,
F.
, and
Habashi
,
W. G.
,
2003
, “
FENSAP-ICE’s Three-Dimensional In-Flight Ice Accretion Module: ICE3D
,”
J. Aircr.
,
40
(
2
), pp.
239
247
.
13.
Nilamdeen
,
S.
, and
Habashi
,
W. G.
,
2011
, “
Multiphase Approach Toward Simulating Ice Crystal Ingestion in Jet Engines
,”
J. Propul. Power
,
27
(
5
), pp.
959
969
.
14.
Wright
,
W. B.
,
Struk
,
P.
,
Bartkus
,
T.
, and
Addy
,
G.
,
2015
, “Recent Advances in the LEWICE Icing Model,” SAE Technical Papers, June 2015.
15.
Wright
,
W. B.
,
Jorgenson
,
P. C. E.
, and
Veres
,
J. P.
,
2010
, “
Mixed Phase Modeling in GlennICE With Application to Engine Icing
,”
AIAA Atmospheric and Space Environments Conference
,
Toronto, Canada
,
Aug. 2–5
, p.
7674
.
16.
Bucknell
,
A.
,
McGilvray
,
M.
,
Gillespie
,
D.
,
Parker
,
L.
,
Forsyth
,
P.
,
Saad Ifti
,
H.
,
Jones
,
G.
,
Collier
,
B.
, and
Reed
,
A.
,
2019
, “
Experimental Study and Analysis of Ice Crystal Accretion on a Gas Turbine Compressor Stator Vane
,”
International Conference on Icing of Aircraft, Engines, and Structures
,
Minneapolis, MN
,
June 17–21
.
17.
Bucknell
,
A.
,
McGilvray
,
M.
,
Gillespie
,
D. R.
,
Jones
,
G.
,
Reed
,
A.
, and
Collier
,
B.
,
2020
, “
Experimental Studies of Ice Crystal Accretion on Axisymmetric Bodies at Aeroengine Conditions
,”
J. Propul. Power
,
36
(
6
), pp.
836
850
.
18.
Connolly
,
J.
,
McGilvray
,
M.
,
Gillespie
,
D. R.
,
Jones
,
G.
, and
Collier
,
B.
,
2020
, “
Digital Image Projection for 3D Ice Crystal Icing Accretion Measurements
,”
AIAA AVIATION 2020 FORUM
,
Virtual Event
,
June 15–19
, p.
2812
.
19.
Connolly
,
J.
,
Choi
,
M.
,
Yang
,
X.
,
Doherty
,
L. J.
,
McGilvray
,
M.
,
Gillespie
,
D. R.
,
Collier
,
B.
, and
Jones
,
G.
,
2020
, “
Ice Crystal Accretion in a Combined Linear Cascade and Swan Neck Duct
,”
AIAA AVIATION 2020 FORUM
,
Virtual Event
,
June 15–19
, p.
2828
.
20.
Bucknell
,
A.
,
McGilvray
,
M.
,
Gillespie
,
D. R.
,
Jones
,
G.
,
Reed
,
A.
, and
Buttsworth
,
D. R.
,
2018
, “
Heat Transfer in the Core Compressor Under Ice Crystal Icing Conditions
,”
ASME J. Eng. Gas Turbines Power
,
140
(
7
), p.
071501
.
21.
Struk
,
P. M.
,
Broeren
,
A. P.
,
Tsao
,
J.-C.
,
Vargas
,
M.
,
Wright
,
W. B.
,
Currie
,
T.
,
Knezevici
,
D.
, and
Fuleki
,
D.
,
2011
, “
Fundamental Ice Crystal Accretion Physics Studies
,”
International Conference on Aircraft and Engine Icing and Ground Deicing
,
Chicago, IL
,
June 13–17
, p.
0018
.
22.
Knezevici
,
D. C.
,
Fuleki
,
D.
, and
MacLeod
,
J.
,
2011
, “Development and Commissioning of a Linear Compressor Cascade Rig for Ice Crystal Research,” SAE Technical Papers, SAE International.
23.
Currie
,
T.
,
Struk
,
P.
,
Tsao
,
J.-C.
,
Fuleki
,
D.
, and
Knezevici
,
D.
,
2012
, “
Fundamental Study of Mixed-Phase Icing With Application to Ice Crystal Accretion in Aircraft Jet Engines
,”
4th AIAA Atmospheric and Space Environments Conference
,
New Orleans, LA
,
June 25–28
, p.
3035
.
24.
Currie
,
T. C.
,
Fuleki
,
D.
,
Knezevici
,
D. C.
, and
MacLeod
,
J. D.
,
2013
, “
Altitude Scaling of Ice Crystal Accretion
,”
5th AIAA Atmospheric and Space Environments Conference
,
San Diego, CA
,
June 24–27
, p.
2677
.
25.
Struk
,
P. M.
,
Bencic
,
T.
,
Tsao
,
J. C.
,
Fuleki
,
D.
, and
Knezevici
,
D. C.
,
2013
, “
Preparation for Scaling Studies of Ice-Crystal Icing at the NRC Research Altitude Test Facility
,”
5th AIAA Atmospheric and Space Environments Conference
,
San Diego, CA
,
June 24–27
, p.
2675
.
26.
Fuleki
,
D.
,
Chalmers
,
J. L.
, and
Galeote
,
B.
,
2015
, “Technique for Ice Crystal Particle Size Measurements and Results for the National Research Council of Canada Altitude Ice Crystal Test System,”, SAE Technical Papers, June 2015.
27.
Leroy
,
D.
,
Fontaine
,
E.
,
Schwarzenboeck
,
A.
,
Strapp
,
J. W.
,
Lilie
,
L.
,
Delanoë
,
J.
,
Protat
,
A.
,
Dezitter
,
F.
, and
Grandin
,
A.
,
2015
, “HAIC/HIWC Field Campaign-Specific Findings on PSD Microphysics in High IWC Regions From In Situ Measurements: Median Mass Diameters, Particle Size Distribution Characteristics and Ice Crystal Shapes,” SAE Technical Paper.
28.
van Diedenhoven
,
B.
,
Fridlind
,
A. M.
,
Cairns
,
B.
, and
Ackerman
,
A. S.
,
2014
, “
Variation of Ice Crystal Size, Shape, and Asymmetry Parameter in Tops of Tropical Deep Convective Clouds
,”
J. Geophys. Res.: Atmos.
,
119
(
20
), pp.
11
809
.
29.
FAA
,
2017
, “
Appendix D to Part 33—Mixed Phase and Ice Crystal Icing Envelope (Deep Convective Clouds)
,” https://www.govinfo.gov/content/pkg/CFR-2024-title14-vol1/pdf/CFR-2024-title14-vol1-part33.pdf, Accessed February 23, 2020.
30.
Arastoopour
,
H.
,
Gidaspow
,
D.
, and
Lyczkowski
,
R. W.
,
2022
,
Transport Phenomena in Multiphase Systems
(
Mechanical Engineering Series
),
Springer International Publishing
,
Cham
.
31.
Gupta
,
A.
,
2021
, “
Application of Extended Messinger Model for Ice Accretion on Complex Geometries
,” PhD Thesis,
Georgia Institute of Technology
,
Atlanta, GA
.
32.
Yang
,
X.
,
McGilvray
,
M.
, and
Gillespie
,
D. R.
,
2022
, “
Modelling the Particle Trajectory and Melting Behaviour of Non-spherical Ice Crystal Particles
,”
Int. J. Multiphase Flow
,
148
, p.
103949
.
33.
Bucknell
,
A.
,
2018
, “
Ice Crystal Icing in Gas Turbine Engines
,” PhD Thesis,
University of Oxford
,
Oxford, UK
.
34.
Bucknell
,
A.
,
McGilvray
,
M.
,
Gillespie
,
D.
,
Yang
,
X.
,
Jones
,
G.
, and
Collier
,
B.
,
2019
, “ICICLE: A Model for Glaciated & Mixed Phase Icing for Application to Aircraft Engines,” SAE Technical Papers, June 2019.
35.
Yang
,
X.
,
McGilvray
,
M.
, and
Gillespie
,
D.
,
2021
, “
Numerical Modeling and Parametric Study of the Melting Behavior of Ice Crystal Particles
,”
AIAA J.
,
59
(
11
), pp.
4660
4668
.
36.
Connolly
,
J. P.
,
McGilvray
,
M.
,
Gillespie
,
D.
,
Bucknell
,
A.
,
Parker
,
L.
,
Jones
,
G.
, and
Collier
,
B.
,
2019
, “Two-Way Flow Coupling in Ice Crystal Icing Simulation,” SAE Technical Papers (June).
37.
Parker
,
L.
,
McGilvray
,
M.
, and
Gillespie
,
D.
,
2023
, “Modelling and Simulation of Mixed Phase Ice Crystal Icing in Three-Dimensions,” SAE Technical Paper Series, Vol. 1.
38.
Trontin
,
P.
,
Blanchard
,
G.
, and
Villedieu
,
P.
,
2016
, “
A Comprehensive Numerical Model for Mixed-Phase and Glaciated Icing Conditions
,”
8th AIAA Atmospheric and Space Environments Conference
,
Washington, DC
,
June 13–17
, p.
3742
.
39.
Knezevici
,
D.
,
Fuleki
,
D.
,
Currie
,
T.
, and
MacLeod
,
J.
,
2012
, “
Particle Size Effects on Ice Crystal Accretion
,”
4th AIAA Atmospheric and Space Environments Conference
,
New Orleans, LA
,
June 25–28
, p.
3039
.
40.
Struk
,
P.
,
Bartkus
,
T.
,
Tsao
,
J. C.
,
Currie
,
T.
, and
Fuleki
,
D.
,
2015
, “Ice Accretion Measurements on an Airfoil and Wedge in Mixed-Phase Conditions,” SAE Technical Papers, June 2015.
41.
Currie
,
T.
,
Fuleki
,
D.
, and
Davison
,
C.
,
2015
, “Simulation of Ice Particle Melting in the NRCC RATFac Mixed-Phase Icing Tunnel,” SAE Technical Papers, June.
42.
Bagheri
,
G.
, and
Bonadonna
,
C.
,
2016
, “
On the Drag of Freely Falling Non-spherical Particles
,”
Powder Technol.
,
301
, pp.
526
544
.
43.
Haider
,
A.
, and
Levenspiel
,
O.
,
1989
, “
Drag Coefficient and Terminal Velocity of Spherical and Nonspherical Particles
,”
Powder Technol.
,
58
(
1
), pp.
63
70
.
44.
Hölzer
,
A.
, and
Sommerfeld
,
M.
,
2008
, “
New Simple Correlation Formula for the Drag Coefficient of Non-spherical Particles
,”
Powder Technol.
,
184
(
3
), pp.
361
365
.
45.
Guha
,
A.
,
2008
, “
Transport and Deposition of Particles in Turbulent and Laminar Flow
,”
Annu. Rev. Fluid Mech.
,
40
(
1
), pp.
311
341
.
46.
Caporaloni
,
M.
,
Tampieri
,
F.
,
Trombetti
,
F.
,
Vittori
,
O.
,
Caporaloni
,
M.
,
Tampieri
,
F.
,
Trombetti
,
F.
, and
Vittori
,
O.
,
1975
, “
Transfer of Particles in Nonisotropic Air Turbulence
,”
J. Atmos. Sci.
,
32
(
3
), pp.
565
568
.
47.
Reeks
,
M. W.
,
1983
, “
The Transport of Discrete Particles in Inhomogeneous Turbulence
,”
J. Aerosol Sci.
,
14
(
6
), pp.
729
739
.
48.
Mason
,
B.
,
1956
, “
On the Melting of Hailstones
,”
Q. J. R. Metereol. Soc.
,
82
(
352
), pp.
209
216
.
49.
Hauk
,
T.
,
2016
, “
Investigation of the Impact and Melting Process of Ice Particles
,” PhD Thesis,
Technische Universität Darmstadt
,
Darmstadt
.
50.
Hauk
,
T.
,
Bonaccurso
,
E.
,
Villedieu
,
P.
, and
Trontin
,
P.
,
2016
, “
Theoretical and Experimental Investigation of the Melting Process of Ice Particles
,”
J. Thermophys. Heat Transfer
,
30
(
4
), pp.
946
954
.
51.
Vidaurre
,
G.
, and
Hallett
,
J.
,
2009
, “
Particle Impact and Breakup in Aircraft Measurement
,”
J. Atmos. Ocean. Technol.
,
26
(
5
), pp.
972
983
.
52.
Trontin
,
P.
, and
Villedieu
,
P.
,
2018
, “
A Comprehensive Accretion Model for Glaciated Icing Conditions
,”
Int. J. Multiphase Flow
,
108
, pp.
105
123
.
53.
Duan
,
R. Q.
,
Koshizuka
,
S.
, and
Oka
,
Y.
,
2003
, “
Numerical and Theoretical Investigation of Effect of Density Ratio on the Critical Weber Number of Droplet Breakup
,”
J. Nucl. Sci. Technol.
,
40
(
7
), pp.
501
508
.
54.
King
,
M. C.
,
Bachalo
,
W. D.
,
Bell
,
D.
, and
King-Steen
,
L. E.
,
2018
, “
Weber Number Tests in the NASA Icing Research Tunnel
,”
2018 Atmospheric and Space Environments Conference
,
Atlanta, GA
,
June 5–9
, p.
3184
.
You do not currently have access to this content.