Abstract

The electrification of process heat generation will be a key to achieving carbon neutrality in the coming decades. One of the most promising approaches is to replace conventional heat supply systems with high-temperature heat pumps (HTHPs). A promising heat pump concept is based on the reverse Rankine cycle that uses water as its working fluid. By using turbomachinery for the compression process in this cycle, the performance of the HTHP can be increased compared to the volumetric displacement systems, like screw or piston compressors. Although the design of the compressor geometry can be done sequentially in relation to the HTHP cycle design, better results can be obtained by an approach that integrates turbomachinery and the thermodynamic cycle design. Against this background, an automated optimization method for a reverse Rankine HTHP with two radial turbo-compressors in series is presented. In contrast to the current state of the art, the presented novel optimization approach uses 3D computational fluid dynamics data to calculate the compressor’s performance. Furthermore, the integration of low-fidelity compressor specific reduced-order models are used to accelerate the gradient-free optimization process by a CO-Kriging surrogate model. The advantages of the novel approach are justified by comparing the numerical effort and the final values of the optimization objectives.

References

1.
Lee
,
H.
, and
Romero
,
J.
,
2023
, “Summary for Policymakers,”
Climate Change 2023: Synthesis Report.Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change
,
H.
Lee
, and
J.
Romero
, eds.,
IPCC
,
Geneva, Switzerland
, pp.
1
34
.
2.
Utri
,
M.
,
2024
, “Entwicklung einer Hochtemperatur-Wärmepumpe mit Wasserdampf-Schraubenverdichter zur Wärme- und Prozessdampfbereitstellung,” Version 1.0, Fraunhofer IEG, https://www.ieg.fraunhofer.de/de/referenzprojekte/SteamScrew.html, Accessed February 19, 2024.
3.
Schaffrath
,
R.
,
Kriese
,
M.
,
Kajasa
,
B.
,
Köhler
,
M.
,
Nicke
,
E.
, and
Voß
,
C.
,
2022
, “
Multi Operating Point Aerodynamic Optimization of a Radial Compressor Impeller for an Application in High Temperature Heat Pump
,” p.
V10DT34A011
.
4.
Schaffrath
,
R.
,
Nicke
,
E.
,
Forsthofer
,
N.
,
Kunc
,
O.
, and
Voß
,
C.
,
2023
, “
Gradient-Free Aerodynamic Optimization With Structural Constraints and Surge Line Control for Radial Compressor Stage
,” p.
V13DT34A005
.
5.
Abu Khass
,
O.
,
Tran
,
A. P.
,
Klöppel
,
S.
, and
Stathopoulos
,
P.
,
2023
, “
Modelling of Two-Phase Water Ejector in Rankine Cycle High Temperature Heat Pumps
,” p.
V005T06A003
.
6.
Follen
,
G.
,
2000
, “Numerical Zooming Between a NPSS Engine System Simulation and a One-Dimensional High Compressor Analysis Code.”
7.
Hendler
,
M.
,
Lockan
,
M.
,
Bestle
,
D.
, and
Flassig
,
P.
,
2018
, “
Component-Specific Preliminary Engine Design Taking Into Account Holistic Design Aspects
,”
Int. J. Turbomach., Propulsion Power
,
3
(
2
), p.
12
.
8.
Schmeink
,
J.
, and
Schnoes
,
M.
,
2022
,
Automated Component Preliminary Design and Evaluation in the Overall Engine Using Fully Coupled Approaches
,” p.
V10DT34A005
.
9.
Pachidis
,
V.
,
Pilidis
,
P.
,
Talhouarn
,
F.
,
Kalfas
,
A.
, and
Templalexis
,
I.
,
2004
, “
A Fully Integrated Approach to Component Zooming Using Computational Fluid Dynamics
,”
ASME J. Eng. Gas Turbines Power
,
128
(
3
), pp.
579
584
.
10.
Pachidis
,
V.
,
Pilidis
,
P.
,
Texeira
,
J.
, and
Templalexis
,
I.
,
2007
, “
A Comparison of Component Zooming Simulation Strategies Using Streamline Curvature
,”
Proc. Inst. Mech. Eng. Part G-J. Aerosp. Eng.
,
221
(
1
), pp.
1
15
.
11.
Pilet
,
J.
,
Lecordix
,
J.-L.
,
Garcia-Rosa
,
N.
,
Bare‘nes
,
R.
, and
Lavergne
,
G.
,
2011
, “
Towards a Fully Coupled Component Zooming Approach in Engine Performance Simulation
,”
ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition
,
Vancouver, British Columbia, Canada
,
June 6–10
, pp.
287
299
.
12.
Giuffre’
,
A.
,
Ascione
,
F.
,
Servi
,
C. D.
, and
Pini
,
M.
,
2023
, “
Data-Driven Modeling of High-Speed Centrifugal Compressors for Aircraft Environmental Control Systems
,”
Int. J. Refrig.
,
151
(
1
), pp.
354
369
.
13.
Giuffre’
,
A.
,
Colonna
,
P.
, and
Pini
,
M.
,
2023
, “
Design Optimization of a High-Speed Twin-Stage Compressor for Next-Gen Aircraft Environmental Control System
,”
ASME J. Eng. Gas Turbines Power
,
145
(
3
), p.
031017
.
14.
Persky
,
R.
,
Sauret
,
E.
, and
Ma
,
L.
,
2014
, “Optimisation Methods for Coupled Thermodynamic and 1D Design of Radial Inflow Turbines.”
15.
Bahamonde
,
S.
,
Pini
,
M.
,
De Servi
,
C.
,
Rubino
,
A.
, and
Colonna
,
P.
,
2017
, “
Method for the Preliminary Fluid Dynamic Design of High-Temperature Mini-Organic Rankine Cycle Turbines
,”
ASME J. Eng. Gas Turbines Power
,
139
(
8
), p.
082606
.
16.
Lampe
,
M.
,
De Servi
,
C.
,
Schilling
,
J.
,
Bardow
,
A.
, and
Colonna
,
P.
,
2019
, “
Toward the Integrated Design of Organic Rankine Cycle Power Plants: A Method for the Simultaneous Optimization of Working Fluid, Thermodynamic Cycle, and Turbine
,”
ASME J. Eng. Gas Turbines Power
,
141
(
11
), p.
111009
.
17.
Schuster
,
S.
,
Markides
,
C. N.
, and
White
,
A. J.
,
2020
, “
Design and Off-Design Optimisation of an Organic Rankine Cycle (ORC) System With an Integrated Radial Turbine Model
,”
Appl. Therm. Eng.
,
174
(8th Heat Powered Cycles), p.
115192
.
18.
Giuffre
,
A.
,
Colonna
,
P.
, and
Pini
,
M.
,
2022
, “
The Effect of Size and Working Fluid on the Multi-objective Design of High-Speed Centrifugal Compressors
,”
Int. J. Refrig.
,
143
(
1
), pp.
43
56
.
19.
Schiffmann
,
J.
, and
Favrat
,
D.
,
2010
, “
Design, Experimental Investigation and Multi-objective Optimization of a Small-Scale Radial Compressor for Heat Pump Applications
,”
Energy
,
35
(
1
), pp.
436
450
.
20.
Schiffmann
,
J.
,
2015
, “
Integrated Design and Multi-objective Optimization of a Single Stage Heat-Pump Turbocompressor
,”
ASME J. Turbomach.
,
137
(
7
), p.
071002
.
21.
Javed
,
A.
,
Arpagaus
,
C.
,
Bertsch
,
S.
, and
Schiffmann
,
J.
,
2016
, “
Small-Scale Turbocompressors for Wide-Range Operation With Large Tip-Clearances for a Two-Stage Heat Pump Concept
,”
Int. J. Refrig.
,
69
(
1
), pp.
285
302
.
22.
Meroni
,
A.
,
Zühlsdorf
,
B.
,
Elmegaard
,
B.
, and
Haglind
,
F.
,
2018
, “
Design of Centrifugal Compressors for Heat Pump Systems
,”
Appl. Energy
,
232
, pp.
139
156
.
23.
Du
,
Y.
,
Yang
,
C.
,
Wang
,
H.
, and
Hu
,
C.
,
2021
, “One-Dimensional Optimisation Design and Off-Design Operation Strategy of Centrifugal Compressor for Supercritical Carbon Dioxide Brayton Cycle”.
24.
Yao
,
L.
, and
Zou
,
Z.
,
2020
, “
A One-Dimensional Design Methodology for Supercritical Carbon Dioxide Brayton Cycles: Integration of Cycle Conceptual Design and Components Preliminary Design
,”
Appl. Energy
,
276
(
1
), p.
115354
.
25.
Gollasch
,
J.
,
Lockan
,
M.
,
Stathopoulos
,
P.
, and
Nicke
,
E.
,
2024
, “
Multi-disciplinary Optimization of Thermodynamic Cycles for Large-Scale Heat Pumps With Simultaneous Component Design
,”
ASME J. Eng. Gas Turbines Power
,
146
(
2
), p.
021015
.
26.
Martins
,
J. R. R. A.
, and
Ning
,
A.
,
2022
,
Engineering Design Optimization
,
Cambridge University Press
,
Cambridge, UK
.
27.
Aissa
,
M. H.
, and
Verstraete
,
T.
,
2019
, “
Metamodel-Assisted Multidisciplinary Design Optimization of a Radial Compressor
,”
Int. J. Turbomach. Propul. Power
,
4
(
4
), p.
35
.
28.
Schmitz
,
A.
,
2020
, “Multifidelity-Optimierungsverfahren für Turbomaschinen.” Ruhr Universität Bochum, https://elib.dlr.de/140674/
29.
Voß
,
C.
, and
Nicke
,
E.
,
2008
, “Automatische Optimierung von Verdichterstufen,” Technische Informationsbibliothek Hannover.
30.
Voß
,
C.
,
Aulich
,
M.
, and
Raitor
,
T.
,
2014
, “
Metamodel Assisted Aeromechanical Optimization of a Transonic Centrifugal Compressor
,” 1st TRACE User Conference, https://elib.dlr.de/90969/
31.
Franke
,
M.
,
Kügeler
,
E.
, and
Nürnberger
,
D.
,
2005
, “Das DLR-Verfahren TRACE: Moderne Simulationstechniken für Turbomaschinenströmungen,” Deutscher Luft- und Raumfahrtkongress 2005, DGLR, ed.
32.
Menter
,
F.
,
Kuntz
,
M.
, and
Langtry
,
R.
,
2003
, “
Ten Years of Industrial Experience With the SST Turbulence Model
,”
Heat Mass Transf.
,
4
(
1
), pp.
625
632
.
33.
Cengel
,
Y. A.
, and
Boles
,
M. A.
,
2005
, “Thermodynamics an Engineering Approach”.
34.
Bräunling
,
W. J.
,
2015
,
Flugzeugtriebwerke
, 4th ed.,
VDI-Buch, Springer Vieweg Berlin
,
Heidelberg
.
35.
Bell
,
I. H.
,
Wronski
,
J.
,
Quoilin
,
S.
, and
Lemort
,
V.
,
2014
, “
Pure and Pseudo-Pure Fluid Thermophysical Property Evaluation and the Open-Source Thermophysical Property Library CoolProp
,”
Ind. Eng. Chem. Res.
,
53
(
6
), pp.
2498
2508
.
36.
Kajasa
,
B.
,
Nicke
,
E.
, and
Kügeler
,
E.
,
2023
, “
Numerical Investigation of a Thermally Perfect Gas Model for a Centrifugal Compressor Design With Water Vapor as Working Medium
,” p.
V13CT32A009
.
37.
Sauer
,
M.
,
2018
, “
An Optimization Based Approach to Multi-block Structured Grid Generation
,”
6th European Conference on Computational Mechanics
,
Glasgow, UK
,
June 11–15
.
38.
Kriese
,
M.
,
Klöppel
,
S.
,
Setzepfand
,
N.
,
Schaffrath
,
R.
, and
Nicke
,
E.
,
2023
, “
Part-Load Behavior and Start Up Procedure of a Reverse Rankine High Temperature Heat Pump With Water as Its Working Medium
,” p.
V005T06A027
.
39.
Witte
,
F.
, and
Tuschy
,
I.
,
2020
, “
TESPy: Thermal Engineering Systems in Python
,”
J. Open Sourc. Softw.
,
5
(
49
), p.
2178
.
40.
Casey
,
M.
, and
Robinson
,
C.
,
2021
,
Radial Flow Turbocompressors: Design, Analysis, and Applications
,
Cambridge University Press
,
Cambridge, UK
.
You do not currently have access to this content.