Abstract

Turbomachinery fan optimization is a complex multidisciplinary process, which forces engineers to rely on strong theoretical assumptions and/or can be very computationally expensive. Additionally, with new constraints arising, such as distorted inflow in boundary layer ingestion cases, it is essential to find surrogate models able to account for the requirements and produce satisfying results, while capitalizing on the computational and experimental data already produced on other (e.g., previously developed) configurations. Toward this objective, the present study aimed at predicting the performance of the rotor of a turbomachine fan stage using deep learning (DL) techniques. These approaches have been showing increasingly convincing results in recent times, yet usually applied to toy problems or simplified configurations. Thus, this work evaluates the feasibility of applying DL models to optimize the shape of realistic fan rotor blades. To that end, a pipeline is presented to generate and mesh new geometries, run simulations, and finally train deep neural networks to be used as surrogates for performance prediction. In this framework, a u-net-type deep neural network was used to predict 2D wake flow fields of entropy and two 0D metrics, efficiency, and pressure ratio from the geometry of the blade and its operating conditions. To reduce the complexity of the predictive tasks, a transformative approach is used, by opposition to a fully generative one. For model testing and training, 75 geometries were built through interpolation of pre-existing, parametrized rotor blades. In turn, Reynolds-averaged Navier–Stokes (RANS) computations at various operating points were performed. The model was compared to proper orthogonal decomposition (POD)-Kriging techniques. Results showed that the neural network was only a slight improvement on an isogeometry dataset, but widely outperformed the POD-Kriging model on the multigeometry dataset. As a conclusion, it provided a good proof of concept to learn flow field views and global performance metrics on realistic, 3D, fan rotor geometries to be later used for optimization.

References

1.
Illarramendi
,
E. A.
,
Bauerheim
,
M.
, and
Cuenot
,
B.
,
2022
, “
Performance and Accuracy Assessments of an Incompressible Fluid Solver Coupled With a Deep Convolutional Neural Network
,”
Data-Centric Eng.
,
3
, p.
e2
.
2.
Kochkov
,
D.
,
Smith
,
J. A.
,
Alieva
,
A.
,
Wang
,
Q.
,
Brenner
,
M. P.
, and
Hoyer
,
S.
,
2021
, “
Machine Learning-Accelerated Computational Fluid Dynamics
,”
Proc. Natl. Acad. Sci. USA
,
118
(
21
), p.
e2101784118
.
3.
Obiols-Sales
,
O.
,
Vishnu
,
A.
,
Malaya
,
N.
, and
Chandramowliswharan
,
A.
,
2020
, “
CFDNet: A Deep Learning-Based Accelerator for Fluid Simulations
,”
ACM International Conference on Supercomputing
,
Barcelona, Spain
,
June 29–July 2
, pp.
1
12
.
4.
Wei
,
Z.
,
Guillard
,
B.
,
Fua
,
P.
,
Chapin
,
V.
, and
Bauerheim
,
M.
,
2023
, “
Latent Representation of Computational Fluid Dynamics Meshes and Application to Airfoil Aerodynamics
,”
AIAA J.
,
61
(
8
), pp.
3507
3525
.
5.
Greenman
,
R. M.
, and
Roth
,
K. R.
,
1999
, “
High-Lift Optimization Design Using Neural Networks on a Multi-element Airfoil
,”
ASME J. Fluids Eng.
,
121
(
2
), pp.
434
440
.
6.
Lopez
,
D. I.
,
Ghisu
,
T.
, and
Shahpar
,
S.
,
2022
, “
Global Optimization of a Transonic Fan Blade Through AI-Enabled Active Subspaces
,”
ASME J. Turbomach.
,
144
(
1
), p.
011013
.
7.
Chen
,
D.
,
Gao
,
X.
,
Xu
,
C.
,
Chen
,
S.
,
Fang
,
J.
,
Wang
,
Z.
, and
Wang
,
Z.
,
2020
, “
FlowGAN: A Conditional Generative Adversarial Network for Flow Prediction in Various Conditions
,”
2020 IEEE 32nd International Conference on Tools with Artificial Intelligence (ICTAI)
,
Baltimore, MD
,
Nov. 9–11
, pp.
315
322
.
8.
Thuerey
,
N.
,
Weißenow
,
K.
,
Prantl
,
L.
, and
Hu
,
X.
,
2020
, “
Deep Learning Methods for Reynolds-Averaged Navier–Stokes Simulations of Airfoil Flows
,”
AIAA J.
,
58
(
1
), pp.
25
36
.
9.
Li
,
N.
,
Winkler
,
J.
,
Reimann
,
C. A.
,
Voytovych
,
D.
,
Joly
,
M.
,
Lore
,
K. G.
,
Mendoza
,
J.
, and
Grace
,
S. M.
,
2023
, “
Machine Learning Aided Fan Broadband Interaction Noise Prediction for Leaned and Swept Fans
,”
AIAA AVIATION 2023 Forum
,
San Diego, CA
,
June 12–16
.
10.
Fukami
,
K.
,
Fukagata
,
K.
, and
Taira
,
K.
,
2019
, “
Super-Resolution Reconstruction of Turbulent Flows With Machine Learning
,”
J. Fluid Mech.
,
870
, pp.
106
120
.
11.
Lapeyre
,
C. J.
,
Misdariis
,
A.
,
Cazard
,
N.
,
Veynante
,
D.
, and
Poinsot
,
T.
,
2019
, “
Training Convolutional Neural Networks to Estimate Turbulent Sub-grid Scale Reaction Rates
,”
Combust. Flame
,
203
, pp.
255
264
.
12.
Blechschmidt
,
D.
, and
Mimic
,
D.
,
2023
, “A Machine Learning Approach for the Prediction of Time-Averaged Unsteady Flows in Turbomachinery,” ASME Digital Collection.
13.
Catalani
,
G.
,
Costero
,
D.
,
Bauerheim
,
M.
,
Zampieri
,
L.
,
Chapin
,
V.
,
Gourdain
,
N.
, and
Baqué
,
P.
,
2023
, “
A Comparative Study of Learning Techniques for the Compressible Aerodynamics Over a Transonic RAE2822 Airfoil
,”
Comput. Fluids
,
251
, p.
105759
.
14.
Akolekar
,
H. D.
,
Sandberg
,
R. D.
,
Hutchins
,
N.
,
Michelassi
,
V.
, and
Laskowski
,
G.
,
2019
, “
Machine-Learnt Turbulence Closures for Low-Pressure Turbines With Unsteady Inflow Conditions
,”
ASME J. Turbomach.
,
141
(
10
), p.
101009
.
15.
Luo
,
S.
,
Cui
,
J.
,
Sella
,
V.
,
Liu
,
J.
,
Koric
,
S.
, and
Kindratenko
,
V.
,
2021
, “Turbomachinery Blade Surrogate Modeling Using Deep Learning,”
High Performance Computing, Springer International Publishing
,
H.
Jagode
,
H.
Anzt
,
H.
Ltaief
, and
P.
Luszczek
, eds.,
Springer
,
6330 Cham, Switzerland
, pp.
92
104
.
16.
Bruni
,
G.
,
Maleki
,
S.
, and
Krishnababu
,
S. K.
,
2023
, “
C(NN)FD — A Deep Learning Framework for Turbomachinery CFD Analysis
,”
IEEE Trans. Indus. Infor.
,
20
(
8
), pp.
10230
10237
.
17.
Agromayor
,
R.
,
Anand
,
N.
,
Müller
,
J.-D.
,
Pini
,
M.
, and
Nord
,
L. O.
,
2021
, “
A Unified Geometry Parametrization Method for Turbomachinery Blades
,”
Comput.-Aided Des.
,
133
, p.
102987
.
18.
Reid
,
L.
, and
Moore
,
R. D.
,
1978
, “Performance of Single-Stage Axial-Flow Transonic Compressor With Rotor and Stator Aspect Ratios of 1.19 and 1.26, Respectively, and With Design Pressure Ratio of 1.82,” Nov., NTRS Author Affiliations: NASA Lewis Research Center, NTRS Report/Patent Number: NASA-TP-1338, NTRS Document ID: 19790001889, NTRS Research Center: Legacy CDMS (CDMS).
19.
Pierzga
,
M. J.
, and
Wood
,
J. R.
,
1985
, “
Investigation of the Three-Dimensional Flow Field Within a Transonic Fan Rotor: Experiment and Analysis
,”
ASME J. Eng. Gas Turbines Power
,
107
(
2
), pp.
436
448
.
20.
Bousquet
,
Y.
,
Binder
,
N.
,
Rojda
,
L.
, and
Thacker
,
A.
,
2022
, “
Analysis of the Unsteady Flow Field at Stall Conditions for a Low-Speed Low-Pressure Ratio Axial Fan With Full-Annulus Simulation
,”
ASME J. Turbomach.
,
144
(
11
), p.
111008
.
21.
García Rosa
,
N.
,
Dufour
,
G.
,
Barènes
,
R.
, and
Lavergne
,
G.
,
2015
, “
Experimental Analysis of the Global Performance and the Flow Through a High-Bypass Turbofan in Windmilling Conditions
,”
ASME J. Turbomach.
,
137
(
5
), p.
051001
.
22.
Pagès
,
V.
,
Duquesne
,
P.
,
Aubert
,
S.
,
Blanc
,
L.
,
Ferrand
,
P.
,
Ottavy
,
X.
, and
Brandstetter
,
C.
,
2022
, “
UHBR Open-Test-Case Fan ECL5/CATANA
,”
Int. J. Turbomach. Propul. Power
,
7
(
2
), p.
17
.
23.
Lagha
,
M.
,
2020
, “Étude architecturale et aérodynamique d’un effecteur propulsif à Mach de vol intermédiaire,” These de doctorat,
ISAE
,
Toulouse
.
24.
Wingel
,
C.
,
2023
, “Investigation of RANS Approach for the Prediction of Cooled Turbine Stage Flows Submitted to Swirled Hot Streaks,” These de doctorat,
ISAE
,
Toulouse
.
25.
Binder
,
N.
,
Courty-Audren
,
S.-K.
,
Duplaa
,
S.
,
Dufour
,
G.
, and
Carbonneau
,
X.
,
2015
, “
Theoretical Analysis of the Aerodynamics of Low-Speed Fans in Free and Load-Controlled Windmilling Operation
,”
ASME J. Turbomach.
,
137
(
10
), p.
101001
.
26.
Binder
,
N.
,
2016
, “Aero-thermodynamique des Turbomachines en Fonctionnement Hors-Adaptation,” July.
27.
Zoph
,
B.
,
Vasudevan
,
V.
,
Shlens
,
J.
, and
Le
,
Q. V.
,
2018
, “
Learning Transferable Architectures for Scalable Image Recognition
,”
2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition
,
Salt Lake City, UT
,
June 18–23
, pp.
8697
8710
.
28.
Ronneberger
,
O.
,
Fischer
,
P.
, and
Brox
,
T.
,
2015
, “U-Net: Convolutional Networks for Biomedical Image Segmentation,”
Medical Image Computing and Computer-Assisted Intervention -- MICCAI 2015
,
N.
Navab
,
J.
Hornegger
,
W.
Wells
, and
A.
Frangi
, eds.,
Springer International Publishing
,
Cham, Switzerland
, pp.
234
241
.
29.
Alfeld
,
P.
,
1984
, “
A Trivariate Clough—Tocher Scheme for Tetrahedral Data
,”
Comput. Aided Geom. Des.
,
1
(
2
), pp.
169
181
.
30.
Kingma
,
D. P.
, and
Ba
,
J.
,
2017
, “Adam: A Method for Stochastic Optimization,” Jan., arXiv:1412.6980 [cs].
31.
LeGresley
,
P.
, and
Alonso
,
J.
,
2000
, “
Airfoil Design Optimization Using Reduced Order Models Based on Proper Orthogonal Decomposition
,”
Fluids 2000 Conference and Exhibit
,
Denver, CO
,
June 19–22
.
32.
Sirovich
,
L.
,
1987
, “
Turbulence and the Dynamics of Coherent Structures. I. Coherent Structures
,”
Q. Appl. Math.
,
45
(
3
), pp.
561
571
.
33.
Pedregosa
,
F.
,
Varoquaux
,
G.
,
Gramfort
,
A.
,
Michel
,
V.
,
Thirion
,
B.
,
Grisel
,
O.
, and
Blondel
,
M.
,
2011
, “
Scikit-learn: Machine Learning in Python
,”
J. Mach. Learn. Res.
,
12
(
85
), pp.
2825
2830
.
You do not currently have access to this content.