Abstract

Entry region heat transfer is known to provide significantly higher heat transfer than fully developed conditions. Utilizing entry region heat transfer would provide an additional heat sink at the inlet of an aircraft engine before the fan, but requires further investigation of the convective heat transfer augmentation and downstream boundary layer impacts. The addition of near-wall heat transfer augmentation features only in the entry region at high Reynolds numbers is uncommon. Thus, heat transfer enhancement comparing small features in the entrance region of a circular channel and the effect on the downstream boundary layer has not been investigated. This study investigates three heat transfer augmentation features: pins, fins, and turbulators, mounted on the wall at the inlet of a circular channel. Two boundary layer probes, one mounted immediately after the augmentation features and one located three diameters downstream of the features, are used to evaluate the growth of the boundary layer due to the features. The convective heat transfer is evaluated using a constant heat flux surface with surface temperature measurements using infrared thermography. All features are evaluated at Reynolds numbers ranging from 1.0 × 105 to 5.0 × 105. Each type of geometry is capable of producing augmented heat transfer relative to a smooth entry region, with the maximum overall heat transfer coefficient augmentation of 2.8 compared to a smooth entry region. Fin arrays produced the lowest average total pressure losses, doubling the losses compared to a smooth channel. Overall, the fin arrays also provided the highest overall heat transfer coefficient performance with minimal total pressure boundary layer losses, but also exhibited a sensitivity to Reynolds number.

References

1.
El-Sayed
,
S. A. S. A. S. A.
,
El-Sayed
,
S. A. S. A. S. A.
,
Abdel-Hamid
,
M. E.
, and
Sadoun
,
M. M.
,
1997
, “
Experimental Study of Turbulent Flow Inside a Circular Tube With Longitudinal Interrupted Fins in the Streamwise Direction
,”
Exp. Therm. Fluid Sci.
,
15
(
1
), pp.
1
15
.
2.
El-Sayed
,
S. A. S. A.
,
El-Sayed
,
S. A. S. A.
, and
Saadoun
,
M. M.
,
2012
, “
Experimental Study of Heat Transfer to Flowing Air Inside a Circular Tube With Longitudinal Continuous and Interrupted Fins
,”
J. Electron. Cool. Therm. Control
,
2
(
1
), pp.
1
16
.
3.
Lundburg
,
E. C.
,
Lynch
,
S. P.
, and
Lyall
,
M. E.
,
2023
, “
Heat Transfer Augmentation With Pin Fins in the Entry Region of Circular Channels
,”
Proceedings of the AIAA SCITECH 2023 Forum
,
National Harbor, MD
,
Jan. 23–27
.
4.
Wu
,
H.
,
Ting
,
D. S. K.
, and
Ray
,
S.
,
2017
, “
An Experimental Study of Turbulent Flow Behind a Delta Winglet
,”
Exp. Therm. Fluid Sci.
,
88
, pp.
46
54
.
5.
Pauley
,
W. R.
, and
Eaton
,
J. K.
,
1994
, “
The Effect of Embedded Longitudinal Vortex Arrays on Turbulent Boundary Layer Heat Transfer
,”
ASME J. Heat Transfer
,
116
(
4
), pp.
871
879
.
6.
Barbin
,
A. R.
, and
Jones
,
J. B.
,
1963
, “
Turbulent Flow in the Inlet Region of a Smooth Pipe
,”
ASME J. Fluids Eng.
,
85
(
1
), pp.
29
33
.
7.
Campbell
,
W. D.
, and
Slattery
,
J. C.
,
1963
, “
Flow in the Entrance of a Tube
,”
ASME J. Basic Eng.
,
85
(
1
), pp.
41
45
.
8.
Canli
,
E.
,
Ates
,
A.
, and
Bilir
,
Ş
,
2021
, “
Developing Turbulent Flow in Pipes and Analysis of Entrance Region
,”
J. Eng. Sci.
,
9
(
2
), pp.
332
353
.
9.
Bowlus
,
D. A.
, and
Brighton
,
J. A.
,
1968
, “
Incompressible Turbulent Flow in the Inlet Region of a Pipe
,”
ASME J. Basic Eng.
,
90
(
3
), pp.
431
433
.
10.
Walklate
,
P.
,
Heikal
,
M. R. F.
, and
Hatton
,
A. P.
,
1976
, “
Measurement and Prediction of Turbulence and Heat Transfer in the Entrance Region of a Pipe
,”
Proc. Inst. Mech. Eng.
,
190
(
1
), pp.
401
407
.
11.
Mills
,
A. F.
,
1962
, “
Experimental Investigation of Turbulent Heat Transfer in the Entrance Region of a Circular Conduit
,”
J. Mech. Eng. Sci.
,
4
(
1
), pp.
63
77
.
12.
Lawson
,
S. A.
,
Thrift
,
A. A.
,
Thole
,
K. A.
, and
Kohli
,
A.
,
2011
, “
Heat Transfer From Multiple Row Arrays of Low Aspect Ratio Pin Fins
,”
Int. J. Heat Mass Transf.
,
54
(
17–18
), pp.
4099
4109
.
13.
Xu
,
J.
,
Yao
,
J.
,
Su
,
P.
,
Lei
,
J.
,
Wu
,
J.
,
Gao
,
T.
, et al
,
2017
, “
ASME Turbo Expo
,”
Turbomachinery Technical Conference and Exposition
,
Charlotte, NC
,
June 26–30
.
14.
Nuntakulamarat
,
M.
,
Shiau
,
C. C.
, and
Han
,
J. C.
,
2020
, “
Heat Transfer and Pressure Drop Measurements in a High Aspect Ratio Channel With Circular Pins and Strip Fins
,”
ASME J. Therm. Sci. Eng. Appl.
,
12
(
3
), p.
031019
.
15.
Tiggelbeck
,
S.
,
Mitra
,
N. K.
, and
Fiebig
,
M.
,
1993
, “
Experimental Investigations of Heat Transfer Enhancement and Flow Losses in a Channel With Double Rows of Longitudinal Vortex Generators
,”
Int. J. Heat Mass Transf.
,
36
(
9
), pp.
2327
2337
.
16.
Zhao
,
Z.
,
Luo
,
L.
,
Qiu
,
D.
,
Wang
,
S.
,
Wang
,
Z.
, and
Sundén
,
B.
,
2021
, “
On the Topology of Vortex Structures and Heat Transfer of a Gas Turbine Blade Internal Tip With Different Arrangement of Delta-Winglet Vortex Generators
,”
Int. J. Therm. Sci.
,
160
, p.
106676
.
17.
Ostanek
,
J. K.
, and
Thole
,
K. A.
,
2012
, “
Flowfield Measurements in a Single Row of Low Aspect Ratio Pin Fins
,”
ASME J. Turbomach.
,
134
(
5
), p.
051034
.
18.
Medzorian
,
J. R.
, and
Lynch
,
S. P.
,
2023
, “
Effect of Freestream Turbulence on Wall-Bounded Tip Vortex Breakdown and Decay Mechanisms
,”
Proceedings of the AIAA SCITECH 2023 Forum
,
National Harbor, MD
,
Jan. 23–27
.
19.
Herndon
,
M. A.
, and
Jaworski
,
J. W.
,
2023
, “
Linear Stability of a Counter-Rotating Vortex Pair Approaching an Inviscid Wall
,”
Theor. Comput. Fluid Dyn.
,
37
(
4
), pp.
519
532
.
20.
Incropera
,
F. P.
, and
Dewitt
,
D. P.
,
1996
,
Fundamentals of Heat and Mass Transfer
,
John Wiley & Sons
,
New York
.
21.
Colebrook
,
C. F.
,
1939
, “
Turbulent Flow in Pipes, With Particular Reference to the Transition Region Between the Smooth and Rough Pipe Laws.
,”
J. Inst. Civ. Eng.
,
11
(
4
), pp.
133
156
.
22.
Jenssen
,
U.
,
Schanderl
,
W.
,
Strobl
,
C.
,
Unglehrt
,
L.
, and
Manhart
,
M.
,
2021
, “
The Viscous Sublayer in Front of a Wall-Mounted Cylinder
,”
J. Fluid Mech.
,
919
, p.
A37
.
23.
Moffat
,
R. J.
,
1982
, “
Contributions to the Theory of Single-Sample Uncertainty Analysis
,”
ASME J. Fluids Eng.
,
104
(
2
), pp.
250
258
.
24.
Ostanek
,
J. K.
, and
Thole
,
K. A.
,
2012
, “
Wake Development in Staggered Short Cylinder Arrays Within a Channel
,”
Exp. Fluids
,
53
(
3
), pp.
673
697
.
25.
Gerhart
,
P. M.
,
Gerhart
,
A. L.
, and
Hochstein
,
J. I.
,
2016
,
Munson, Young and Okiishi's Fundamentals of Fluid Mechanics
,
Wiley
,
New York
.
26.
Tracy
,
N. J.
,
Wright
,
L. M.
, and
Han
,
J.-C.
,
2022
, “
Thermal Performance of Double-Sided, Partial Height Strip Fin Arrays in a High Aspect Ratio, Rectangular Channel
,”
ASME J. Turbomach.
,
144
(
11
), p.
111006
.
27.
Webb
,
R.
, and
Eckert
,
E. R.
,
1972
, “
Application of Rough Surfaces to Heat Exchanger Design
,”
Int. J. Heat Mass Transf.
,
15
(
9
), pp.
1647
1658
.
28.
Çengel
,
Y. A.
, and
Boles
,
M. A.
,
2014
,
Thermodynamics: An Engineering Approach
,
McGraw-Hill
,
New York
.
You do not currently have access to this content.