Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Turbine blade fracture, resulting from high-cycle fatigue (HCF), is the most commonly observed failure mode of turbochargers. In a vaneless turbine, the radial turbine blade is susceptible to HCF under excessive aerodynamic excitation due to the flow field distortion caused by the volute tongue. The present study explores a technique to mitigate blade excitation by reducing pressure disturbance in the volute tongue area. The gas with higher pressure in the inlet section of the volute is transferred to the low-static pressure area upstream of the volute tongue through a throat jet hole. The usage of high-pressure gas improved the homogeneity of the flow field near the volute tongue. The study investigates the mitigation of high-pressure gas jet on turbine blade excitation, the impact of jet hole geometry on the suppression effect of the blade vibration, and the effect of high-pressure jet on turbine performance using numerical simulation of unsteady flow fields. The results indicate that the jet flow has a substantial impact on dampening the blade vibrations. The harmonic pressure amplitude at the monitor point located within the high blade vibration amplitude region is reduced by up to 56%. Generalized pressure analysis reveals that the aerodynamic excitation of the turbine blades is significantly reduced. Experimental evidence verifies the effectiveness of the jet hole scheme in reducing blade vibration. Moreover, the jet hole has a negligible effect on turbine efficiency. However, there is a degree of increased stress in the volute tongue with a jet hole which needs to be evaluated in engineering applications.

References

1.
Ono
,
Y.
,
Shiraishi
,
K.
,
Sakamoto
,
K.
, and
Ito
,
Y.
,
2012
, “
Development of New Turbocharger Technologies for Energy Efficiency and Low Emissions
,”
Proceedings of the 10th International Conference on Turbochargers and Turbocharging
,
London, UK
,
May 15–16
, pp.
365
374
.
2.
Ammad ud Din
,
S.
,
Zhuge
,
W.
,
Song
,
P.
, and
Zhang
,
Y.
,
2019
, “
A Method of Turbocharger Design Optimization for a Diesel Engine With Exhaust Gas Recirculation
,”
Proc. Inst. Mech. Eng. Part D: J. Automob. Eng.
,
233
(
10
), pp.
2572
2584
.
3.
Pan
,
L.
,
Yang
,
M.
,
Murae
,
S.
,
Sato
,
W.
,
Shimohara
,
N.
, and
Yamagata
,
A.
,
2022
, “
“Influence of Tip Clearance Distribution on Blade Vibration of Vaneless Radial Turbine
,”
Proc. Inst. Mech. Eng. Part D: J. Automob. Eng.
,
236
(
5
), pp.
1007
1018
.
4.
Costall
,
A. W.
,
McDavid
,
R. M.
,
Martinez-Botas
,
R. F.
, and
Baines
,
N. C.
,
2011
, “
Pulse Performance Modeling of a Twin Entry Turbocharger Turbine Under Full and Unequal Admission
,”
ASME J. Turbomach.
,
133
(
2
), p.
021005
.
5.
Pan
,
L.
,
Yang
,
M.
,
Murae
,
S.
,
Sato
,
W.
,
Kawakubo
,
T.
,
Yamagata
,
A.
, and
Deng
,
K.
,
2021
, “
Study on Aerodynamic Excitation of Radial Turbine Blades With Vaneless Volute at Low Excitation Order
,”
J. Fluids Struct.
,
107
, p.
103408
.
6.
Kawakubo
,
T.
,
2010
, “
Unsteady Rotor-Stator Interaction of a Radial-Inflow Turbine With Variable Nozzle Vanes
,”
Proceedings of ASME Turbo Expo 2010: Power for Land, Sea, and Air
,
Glasgow, UK
,
June 14–18
, pp.
2075
2084
, Paper No. GT2010-23677.
7.
Hu
,
L.
,
Sun
,
H.
,
Yi
,
J.
,
Curtis
,
E. W.
,
Morelli
,
A.
,
Zhang
,
J.
,
Zhao
,
B.
,
Yang
,
C.
,
Shi
,
X.
, and
Liu
,
S.
,
2013
, “Investigation of Nozzle Clearance Effects on a Radial Turbine: Aerodynamic Performance and Forced Response,” SAE Technical Paper No. 2013-01-0918.
8.
Sato
,
W.
,
Yamagata
,
A.
, and
Hattori
,
H.
,
2017
, “
A Study of Aerodynamic Excitation Forces on Radial Turbine Blade Due to Rotor-Stator Interaction
,”
IHI Eng. Rev.
,
50
(
2
), pp.
42
48
.
9.
Lei
,
X.
,
Qi
,
M.
,
Sun
,
H.
, and
Hu
,
L.
,
2017
, “
Investigation on the Shock Control Using Grooved Surface in a Linear Turbine Nozzle
,”
ASME J. Turbomach.
,
139
(
12
), p.
121008
.
10.
Kreuz-Ihli
,
T.
,
Filsinger
,
D.
,
Schulz
,
A.
, and
Wittig
,
S.
,
2010
, “
Numerical and Experimental Study of Unsteady Flow Field and Vibration in Radial Inflow Turbines
,”
ASME J. Turbomach.
,
122
(
2
), pp.
247
254
.
11.
Senn
,
S. M.
,
Seiler
,
M.
, and
Schaefer
,
O.
,
2011
, “
Blade Excitation in Pulse-Charged Mixed-Flow Turbocharger Turbine
,”
ASME J. Turbomach.
,
133
(
2
), p.
021012
.
12.
Naik
,
P.
,
Lehmayr
,
B.
,
Homeier
,
S.
,
Klaus
,
M.
, and
Vogt
,
D. M.
,
2019
, “
Influence of Turbocharger Turbine Blade Geometry on Vibratory Blade Stresses
,”
ASME J. Eng. Gas Turbines Power
,
141
(
2
), p.
021015
.
13.
Netzhammer
,
S.
,
Vogt
,
D. M.
,
Kraetschmer
,
S.
,
Leweux
,
J.
, and
Koengeter
,
A.
,
2017
, “
Aerodynamic Excitation Analysis of Radial Turbine Blades Due to Unsteady Flow From Vaneless Turbine Housings
,”
Proceedings of ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition
,
Charlotte, NC
,
June 26–30
, Paper No. GT2017-64468.
14.
Kitson
,
S. T.
,
Clay
,
D. C.
,
Brown
,
D. H.
,
Evans
,
R. O.
,
Eastwood
,
D. M.
, and
Tootill
,
P. K.
,
2006
, “
Improving Analysis Capability in Order to Reduce Turbine HCF
,”
Proceedings of the Eighth International Conference on Turbochargers and Turbocharging, IMechE
,
London, UK
,
May 17–18
, pp.
261
271
.
15.
Zhang
,
Y.
,
Duda
,
T.
,
Scobie
,
J. A.
,
Sangan
,
C. M.
,
Copeland
,
C. D.
, and
Redwood
,
A.
,
2018
, “
Design of an Air-Cooled Radial Turbine Part1: Computational Modelling
,”
Proceedings of ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition
,
Oslo, Norway
,
June 11–15
, Paper No. GT2018-76384.
16.
Leonard
,
T.
,
Spence
,
S.
,
Starke
,
A.
, and
Filsinger
,
D.
,
2019
, “
Numerical and Experimental Investigation of the Impact of Mixed Flow Turbine Inlet Cone Angle and Inlet Blade Angle
,”
ASME J. Turbomach.
,
141
(
8
), p.
081001
.
17.
Heuer
,
T.
,
Gugau
,
M.
,
Klein
,
A.
, and
Anschel
,
P.
,
2008
, “
An Analytical Approach to Support High Cycle Fatigue Validation for Turbocharger Turbine Stages
,”
Proceedings of ASME Turbo Expo 2008: Power for Land, Sea, and Air
,
Berlin, Germany
,
June 9–13
, pp.
723
732
, Paper No. GT2008-50764.
18.
Schwitzke
,
M.
,
Schulz
,
A.
, and
Bauer
,
H. J.
,
2013
, “
Prediction of High-Frequency Blade Vibration Amplitudes in a Radial Inflow Turbine With Nozzle Guide Vanes
,”
Proceedings of ASME Turbo Expo 2013: Turbomachinery Technical Conference and Exposition
,
San Antonio, TX
,
June 3–7
, Paper No. GT2013-94761.
19.
Wildheim
,
S. J.
,
1979
, “
Excitation of Rotationally Periodic Structures
,”
ASME J. Appl. Mech.
,
46
(
4
), pp.
878
882
.
20.
Ewins
,
D. J.
,
1973
, “
Vibration Characteristics of Bladed Disc Assemblies
,”
J. Mech. Eng. Sci.
,
15
(
3
), pp.
165
186
.
You do not currently have access to this content.