Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Considering the adequate use of coolant, the secondary cooling effect of trailing edge coolant injection on the downstream endwall surface is investigated in this study. Distributions of adiabatic cooling effectiveness on the endwall surface are obtained through pressure-sensitive paint (PSP) technique in a linear cascade at four mass flowrate ratios (MFR = 1%, 2%, 3%, and 4%) and two density ratios (DR = 1.0 and 1.5). The configurations of trailing edge pressure-side cutback (PC) and central cutback (CC) with three compound angles (β = 15 deg, 30 deg, and 45 deg) are implemented in this study. Reynolds-averaged Navier–Stokes simulations are performed to present the flow field. Results show that the geometry of the cutback slot has a significant effect on the endwall cooling performance. As the compound angle increases, the coolant coverage is expanded in width. A higher density ratio leads to a decrease in the area of coolant coverage, while the distribution is more uniform. Generally, with a higher mass flow ratio, the coolant coverage is greatly improved in area and value, which almost covers the entire downstream endwall surface.

References

1.
Han
,
J. C.
,
2018
, “
Advanced Cooling in Gas Turbines 2016 Max Jakob Memorial Award Paper
,”
ASME J. Heat Transfer
,
140
(
11
), p.
113001
.
2.
Bogard
,
D. G.
, and
Thole
,
K. A.
,
2006
, “
Gas Turbine Film Cooling
,”
AIAA J. Propuls. Power
,
22
(
2
), pp.
249
270
.
3.
Uzol
,
O.
,
Camci
,
C.
, and
Glezer
,
B.
,
2001
, “
Aerodynamic Loss Characteristics of a Turbine Blade With Trailing Edge Coolant Ejection—Part 1: Effect of Cut-Back Length, Spanwise Rib Spacing, Free-Stream Reynolds Number, and Chordwise Rib Length on Discharge Coefficients
,”
ASME J. Turbomach
,
123
(
2
), pp.
238
248
.
4.
Uzol
,
O.
, and
Camci
,
C.
,
2001
, “
Aerodynamic Loss Characteristics of a Turbine Blade With Trailing Edge Coolant Ejection—Part 2: External Aerodynamics, Total Pressure Losses, and Predictions
,”
ASME J. Turbomach
,
123
(
2
), pp.
249
257
.
5.
Holloway
,
D. S.
,
Leylek
,
J. H.
, and
Buck
,
F. A.
,
2002
, “
Pressure Side Bleed Film Cooling: Part I: Steady Framework for Experimental and Computational Results
,” ASME Paper No. GT-2002-30471.
6.
Holloway
,
D. S.
,
Leylek
,
J. H.
, and
Buck
,
F. A.
,
2002
, “
Pressure Side Bleed Film Cooling: Part II: Unsteady Framework for Experimental and Computational Results
,” ASME Paper No. GT-2002-30472.
7.
Martini
,
P.
,
Schulz
,
A.
, and
Bauer
,
H.-J.
,
2006
, “
Film Cooling Effectiveness and Heat Transfer on the Trailing Edge Cutback of Gas Turbine Airfoils with Various Internal Cooling Designs
,”
ASME J. Turbomach
,
128
(
1
), pp.
196
205
.
8.
Gurram
,
N.
,
Ireland
,
P. T.
,
Wong
,
T. H.
, and
Self
,
K. P.
,
2016
, “
Study of Film Cooling in the Trailing Edge Region of a Turbine Rotor Blade in High Speed Flow Using Pressure Sensitive Paint
,” ASME Paper No. GT2016-57356.
9.
Xiao
,
X.
,
Wang
,
P.
,
Xu
,
Q.
,
Du
,
Q.
,
Liu
,
J.
, and
Chang
,
S.
,
2020
, “
Unsteady Numerical Investigation on Film Cooling Characteristics of the Trailing Edge Cutback With Upstream Cylinder Hole
,” ASME Paper No. GT2020-15346.
10.
UIIah
,
I.
,
Burdett
,
T. A.
,
Wright
,
L. M.
,
Han
,
J. C.
, and
Lee
,
C. P.
,
2022
, “
Experimental Evaluation of a Wavy Trailing Edge Cooling Design as an Alternative to Pressure Side Cutback Cooling
,” ASME Paper No. GT2022-78286.
11.
Roback
,
R. J.
, and
Dring
,
R. P.
,
1993
, “
Hot Streak and Phantom Cooling in a Turbine Rotor Passage, Part 1—Separate Effects
,”
ASME J. Turbomach
,
115
(
4
), pp.
657
666
.
12.
Roback
,
R. J.
, and
Dring
,
R. P.
,
1993
, “
Hot Streak and Phantom Cooling in a Turbine Rotor Passage, Part 2—Combined Effects and Analytical Modeling
,”
ASME J. Turbomach
,
115
(
4
), pp.
667
674
.
13.
Yang
,
X.
,
Zhao
,
Q.
,
Wu
,
H.
, and
Feng
,
Z.
,
2024
, “
An Active Phantom Cooling Concept for Turbine Endwall Cooling From Pressure-Surface Film Coolant Injection
,”
ASME J. Heat Mass Transfer
,
146
(
5
), p.
053802
.
14.
Li
,
F.
,
Jia
,
Z.
,
Wang
,
H.
,
Liu
,
Z.
, and
Feng
,
Z.
,
2022
, “
Experimental and Numerical Investigations Into the Blade Tip Phantom Cooling Performance
,”
ASME J. Eng. Gas Turbines Power
,
144
(
7
), p.
071013
.
15.
Bai
,
B.
,
Li
,
Z.
,
Zhang
,
K.
,
Li
,
J.
,
Mao
,
S.
, and
Ng
,
W. F.
,
2023
, “
Effects of Hole Blockage on Endwall Film Cooling and Vane Phantom Cooling Performances of a Transonic Turbine Vane
,”
ASME J. Eng. Gas Turbines Power
,
145
(
4
), p.
041001
.
16.
Zhang
,
L. J.
,
Yin
,
J.
,
Liu
,
K.
, and
Moon
,
H. K.
,
2015
, “
Effect of Hole Diameter on Nozzle Endwall Film Cooling and Associated Phantom Cooling
,” ASME Paper No. GT2015-42541.
17.
Du
,
H.
,
Ekkad
,
S.
, and
Han
,
J. C.
,
1997
, “
Effect of Unsteady Wake With Trailing Edge Coolant Ejection on Detailed Heat Transfer Coefficient Distributions for a Gas Turbine Blade
,”
ASME J. Heat Transfer
,
119
(
2
), pp.
242
248
.
18.
Du
,
H.
,
Ekkad
,
S.
, and
Han
,
J. C.
,
1999
, “
Effect of Unsteady Wake With Trailing Edge Coolant Ejection on Film Cooling Performance for a Gas Turbine Blade
,”
ASME J. Turbomach
,
121
(
3
), pp.
448
455
.
19.
Li
,
S. J.
,
Rallabandi
,
A. P.
, and
Han
,
J. C.
,
2012
, “
Influence of Unsteady Wake With Trailing Edge Coolant Ejection on Turbine Blade Film Cooling
,”
ASME J. Turbomach
,
134
(
6
), p.
061026
.
20.
Li
,
S. J.
,
Yang
,
S. F.
,
Han
,
J. C.
,
Zhang
,
L. J.
, and
Moon
,
H. K.
,
2015
, “
Turbine Blade Surface Phantom Cooling From Upstream Nozzle Trailing Edge Ejection
,” ASME Paper No. GT2015-42128.
21.
Zhang
,
Y.
, and
Yuan
,
X.
,
2014
, “
Experimental Investigation of Turbine Phantom Cooling on Endwall With Trailing Edge Discharge Flow
,” ASME Paper No. GT2014-26781.
22.
Liu
,
K.
,
Xu
,
H.
, and
Fox
,
M.
,
2018
, “
Turbine Nozzle Endwall Phantom Cooling With Compound Angled Pressure Side Injection
,” ASME Paper No. GT2018-75881.
23.
Yang
,
X.
,
Zhang
,
K.
,
Yao
,
J.
,
Wu
,
J.
,
Lei
,
J.
,
Su
,
P.
, and
Fang
,
Y.
,
2023
, “
Experimental snd Numerical Investigations of Vane Endwall Film Cooling With Different Density Ratios
,”
Int. Commun. Heat Mass Transf
,
144
, p.
106778
.
24.
Han
,
J. C.
, and
Rallabandi
,
A. P.
,
2010
, “
Turbine Blade Film Cooling Using PSP Technique
,”
Frontiers Heat Mass Transf
,
1
(
1
), pp.
1
16
.
25.
Park
,
S.
,
Kim
,
J.
,
Bang
,
M.
,
Moon
,
H. K.
,
Ueda
,
O.
, and
Cho
,
H. H.
,
2021
, “
Effects of Seal Installation in the Mid-Passage Gap Between Turbine Blade Platforms on Film Cooling
,”
Appl. Therm. Eng.
,
189
, p.
116683
.
26.
Park
,
S.
,
Jung
,
E. Y.
,
Kim
,
S. H.
,
Sohn
,
H. S.
, and
Cho
,
H. H.
,
2015
, “
Enhancement of Film Cooling Effectiveness Using Backward Injection Holes
,” ASME Paper No. GT2015-43853.
27.
Charbonnier
,
D.
,
Ott
,
P.
,
Jonsson
,
M.
,
Cottier
,
F.
, and
Kobke
,
T.
,
2009
, “
Experimental and Numerical Study of the Thermal Performance of a Film Cooled Turbine Platform
,” ASME Paper No. GT2009-60306.
28.
Chen
,
A. F.
,
Li
,
S. J.
, and
Han
,
J. C.
,
2014
, “
Film Cooling With Forward and Backward Injection for Cylindrical and Fan-Shaped Holes Using PSP Measurement Technique
,” ASME Paper No. GT2014-26232.
29.
Kendall
,
A.
, and
Koochesfahani
,
M.
,
2008
, “
A Method for Estimating Wall Friction in Turbulent Wall-Bounded Flows
,”
Exp. Fluids
,
44
(
5
), pp.
773
780
.
30.
Argyropoulos
,
C. D.
, and
Markatos
,
N. C.
,
2015
, “
Recent Advances on the Numerical Modelling of Turbulent Flows
,”
Appl. Math. Model
,
39
(
2
), pp.
693
732
.
31.
Li
,
J.
,
Yan
,
X.
, and
He
,
K.
,
2020
, “
Effect of Non-Axisymmetric Endwall Profiling on Heat Transfer and Film Cooling Effectiveness of a Transonic Rotor Blade
,”
ASME J. Turbomach
,
142
(
5
), p.
051006
.
You do not currently have access to this content.