Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

This paper presents the application of a novel method to prescribe unsteady boundary conditions to transient, scale-resolving computational fluid dynamics simulations of the high-pressure turbine in modern jet engines. The methodology is based on the compression of the interface data at the combustor–turbine interface, using proper orthogonal decomposition and Fourier series (PODFS). Doing so can reduce the stored data at the interface drastically. The capability of the PODFS method to produce realistic inlet boundary conditions was demonstrated in previous work. Here, the method is applied to a turbine case. The outlet data of a combustor simulation is used to create the PODFS boundary conditions for a scale-resolving simulation of a simplified first nozzle guide vane of the high-pressure turbine. This simulation is compared with simulations with steady-state boundary conditions to show the effect of unsteadiness in the inlet boundary condition on the aerodynamic and thermal behaviors of the turbine. While the aerodynamics show minor sensitivity against the way of applying the inlet boundary conditions, the thermal behavior of the vanes is strongly affected by the modeling of combustor unsteadiness.

References

1.
Tyacke
,
J.
,
Vadlamani
,
N. R.
,
Trojak
,
W.
,
Watson
,
R.
,
Ma
,
Y.
, and
Tucker
,
P. G.
,
2019
, “
Turbomachinery Simulation Challenges and the Future
,”
Prog. Aerosp. Sci.
,
110
, p.
100554
.
2.
Pope
,
S. B.
,
2000
,
Turbulent Flows
, 1st ed.,
Cambridge University Press
,
Cambridge, UK
.
3.
Liu
,
C.-L.
,
Zhu
,
H.-R.
, and
Bai
,
J.-T.
,
2008
, “
Effect of Turbulent Prandtl Number on the Computation of Film-Cooling Effectiveness
,”
Int. J. Heat Mass Transfer
,
51
(
25–26
), pp.
6208
6218
.
4.
Tomasello
,
S. G.
,
Andreini
,
A.
,
Meloni
,
R.
,
Cubeda
,
S.
,
Andrei
,
L.
, and
Michelassi
,
V.
,
2022
, “
Numerical Study of Combustor-Turbine Interaction by Using Hybrid RANS-LES Approach
,”
Proceedings of ASME Turbo Expo 2022
,
Rotterdam, The Netherlands
,
June 13–17
.
5.
Duchaine
,
F.
,
Dombard
,
J.
,
Gicquel
,
L.
, and
Koupper
,
C.
,
2017
, “
On the Importance of Inlet Boundary Conditions for Aerothermal Predictions of Turbine Stages With Large Eddy Simulation
,”
Comput. Fluids
,
154
(
1
), pp.
60
73
.
6.
Cottier
,
F.
,
Pinchaud
,
P.
, and
Dumas
,
G.
,
2019
, “
Aerothermal Predictions of Combustor/Turbine Interactions Using Advanced Turbulence Modeling
,”
In 13th European Conference on Turbomachinery Fluid Dynamics and Thermodynamics, European Conference on Turbomachinery Fluid Dynamics and hermodynamics
,
Lausanne, Switzerland
,
Apr. 8–12
.
7.
Cha
,
C. M.
,
Hong
,
S.
,
Ireland
,
P. T.
,
Denman
,
P.
, and
Savarianandam
,
V.
,
2012
, “
Experimental and Numerical Investigation of Combustor-Turbine Interaction Using an Isothermal, Nonreacting Tracer
,”
ASME J. Eng. Gas. Turbines Power
,
134
(
8
), p.
081501
.
8.
Jacobi
,
S.
,
Mazzoni
,
C.
,
Chana
,
K.
, and
Rosic
,
B.
,
2016
, “
Investigation of Unsteady Flow Phenomena in First Vane Caused by Combuster Flow With Swirl
,”
Proceedings of ASME Turbo Expo 2016
,
Seoul, South Korea
,
June 13–17
.
9.
Shaikh
,
F.
, and
Rosic
,
B.
,
2020
, “
Unsteady Phenomena at the Combustor-Turbine Interface
,”
Proceedings of Global Power & Propulsion Society
,
Virtual
,
Sept. 7–9
.
10.
Hilgert
,
J.
,
Bruschewski
,
M.
,
Werschnik
,
H.
, and
Schiffer
,
H.-P.
,
2017
, “
Numerical Studies on Combustor-Turbine-Interaction at the Large Scale Turbine Rig (LSTR)
,” Proceedings of ASME Turbo Expo 2017.
11.
Cubeda
,
S.
,
Mazzei
,
L.
,
Bacci
,
T.
, and
Andreini
,
A.
,
2019
, “
Impact of Predicted Combustor Outlet Conditions on the Aerothermal Performance of Film-Cooled High Pressure Turbine Vanes
,”
ASME J. Eng. Gas Turbines Power
,
141
(
5
), p.
081501
.
12.
Martin
,
B.
,
Duchaine
,
F.
,
Gicquel
,
L.
,
Odier
,
N.
, and
Dombard
,
J.
,
2022
, “
Accurate Inlet Boundary Conditions to Capture Combustion Chamber and Turbine Coupling With Large-Eddy Simulation
,”
ASME J. Eng. Gas Turbines. Power.
,
144
(
2
), p.
021007
.
13.
Martin
,
B.
,
Duchaine
,
F.
,
Gicquel
,
L.
, and
Odier
,
N.
,
2021
, “
Generation of Realistic Boundary Conditions at the Combustion Chamber/Turbine Interface Using Large-Eddy Simulation
,”
Energies
,
14
(
24
), p.
8206
.
14.
Treleaven
,
N. C. W.
,
Su
,
J.
,
Garmory
,
A.
, and
Page
,
G. J.
,
2019
, “
An Efficient Method to Reproduce the Effects of Acoustic Forcing on Gas Turbine Fuel Injectors in Incompressible Simulations
,”
Flow Turbul. Combust.
,
103
(
2
), pp.
417
437
.
15.
Treleaven
,
N.
,
Staufer
,
M.
,
Spencer
,
A.
,
Garmory
,
A.
, and
Page
,
G. J.
,
2020
, “
Application of the PODFS Method to Inlet Turbulence Generated Using the Digital Filter Technique
,”
J. Comput. Phys.
,
415
, p.
109541
.
16.
Gründler
,
J.
,
Schiffer
,
H.-P.
, and
Lehmann
,
K.
,
2022
, “
An Efficient Unsteady 1-Way Coupling Method of Combustor and Turbine
,”
Proceedings of ASME Turbo Expo 2022
,
Rotterdam, The Netherlands
,
June 13–17
.
17.
Weiss
,
J.
,
2019
, “
A Tutorial on the Proper Orthogonal Decomposition
,”
AIAA Aviation 2019 Forum
, p.
817
.
18.
Anand
,
M. S.
,
Eggels
,
R.
,
Staufer
,
M.
,
Zedda
,
M.
, and
Zhu
,
J.
,
2014
, “
An Advanced Unstructured-Grid Finite-Volume Design System for Gas Turbine Combustion Analysis
”. In
Proceedings of the ASME Gas Turbine India Conference—2013
, M. Jayaraman, ed., ASME.
19.
CFX
,
2021
. “
ANSYS CFX-Solver Theory Guide
”.
20.
Menter
,
F. R.
,
2015
,
Best Practice: Scale-Resolving Simulations in ANSYS CFD: Version 2.00
.
21.
Menter
,
F.
,
Kuntz
,
M.
, and
Bender
,
R.
,
2003
, “
A Scale-Adaptive Simulation Model for Turbulent Flow Predictions
,”
41st AIAA Aerospace Sciences Meeting 2003
,
Reno, NV
,
Jan. 6–9
.
22.
Davidson
,
L.
,
2014
, “
Fluid Mechanics, Turbulent Flow and Turbulence Modeling
”.
Course Material
,
Chalmers University of Technology
,
Göteborg, Sweden
.
23.
Spalart
,
P. R.
,
Deck
,
S.
,
Shur
,
M. L.
,
Squires
,
K. D.
,
Strelets
,
M. K.
, and
Travin
,
A.
,
2006
, “
A New Version of Detached-Eddy Simulation, Resistant to Ambiguous Grid Densities
,”
Theor. Comput. Fluid Dyn.
,
20
(
3
), pp.
181
195
.
You do not currently have access to this content.