Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

The focus of this article is the impact of surface roughness on the boundary layer caused by a 7YSZ thermal barrier coating (TBC). Experimental investigations are conducted on a NGV installed inside the wind tunnel for Straight Cascades Göttingen (EGG). The shape of the vane has been altered in a way that eliminates the influence of TBC's thickness. Therefore, it is expected that only the surface roughness is influencing the location of the separation and boundary layer transition. The transition next to the roughness can also be affected by positive and negative pressure gradients, separation, and interacting shocks. The impact of TBC on the turbulent wedges' appearance, separation bubble's position and length, and transition location is examined in this study. This research, combined with prior investigations, provides a comprehensive understanding of a turbine vane's aerothermodynamics. To investigate unsteady flow phenomena on a TBC-coated NGV, ultra-fast-response temperature-sensitive paint (iTSP) is utilized. This dataset will serve as a reference point for developing new turbine vane designs that include TBC and extensive cooling. Furthermore, the findings will be employed as a benchmark for improving numerical models.

References

1.
Dupuy
,
D.
,
Gicquel
,
L.
,
Odier
,
N.
,
Duchaine
,
F.
, and
Arts
,
T.
,
2020
, “
Analysis of the Effect of Intermittency in a High-Pressure Turbine Blade
,”
Phys. Fluids
,
32
(
9
), p.
095101
.
2.
Babinsky
,
H.
, and
Harvey
,
J. K.
,
2011
,
Shock Wave-Boundary-Layer Interactions
,
Cambridge University Press
,
Cambridge, UK
.
3.
Dick
,
E.
, and
Kubacki
,
S.
,
2017
, “
Transition Models for Turbomachinery Boundary Layer Flows: A Review
,”
Int. J. Turbomach. Propuls. Power
,
2
(
2
), p.
4
.
4.
Sandberg
,
R. D.
, and
Wheeler
,
A. P. S.
,
2019
, “
Effect of Trailing Edge Boundary Conditions on Acoustic Feedback Loops in High-Pressure Turbines
,”
J. Sound Vib.
,
461
(
114917
).
5.
Sandberg
,
R. D.
, and
Michelassi
,
V.
,
2022
, “
Fluid Dynamics of Axial Turbomachinery: Blade- and Stage-Level Simulations and Models
,”
Annu. Rev. Fluid Mech.
,
54
(
1
), pp.
255
285
.
6.
Doerffer
,
P.
,
Dussauge
,
J.-P.
,
Grothe
,
P.
,
Petersen
,
A.
, and
Billard
,
F.
,
2020
,
Transition Location Effect on Shock Wave Boundary Layer Interaction
,
Springer Nature
,
Cham
.
7.
Hilfer
,
M.
,
Dufhaus
,
S.
,
Petersen
,
A.
,
Yorita
,
D.
, and
Klein
,
C.
,
2017
, “
Application of Pressure and Temperature Sensitive Paint on a Highly Loaded Turbine Guide Vane in a Transonic Linear Cascade
,”
Proceedings of the 1st Global Power and Propulsion Forum GPPF 2017
, Paper No. GPPF-2017-47, Global Power and Propulsion Society, https://www.gpps.global/wp-content/uploads/2021/01/GPPF_2017_paper_47.pdf
8.
Petersen
,
A.
,
2017
, “
Influence of Cooling on the Transition Location in a Straight High Pressure Turbine Cascade
,”
Proceedings of 12th European Conference on Turbomachinery Fluid Dynamics & Thermodynamics ETC12
,
Stockholm, Sweden
,
Apr. 3–7
, Paper. No: ETC2017-155.
9.
Schulz
,
U.
,
Rätzer-Scheibe
,
H.-J.
,
Saruhan
,
B.
, and
Renteria
,
A. F.
,
2007
, “
Thermal Conductivity Issues of EB-PVD Thermal Barrier Coatings
,”
Materialwiss. Werkstofftech.
,
38
(
9
), pp.
659
666
.
10.
Rätzer-Scheibe
,
H.-J.
, and
Schulz
,
U.
,
2007
, “
The Effects of Heat Treatment and Gas Atmosphere on the Thermal Conductivity of APS and EB-PVD PYSZ Thermal Barrier Coatings
,”
Surf. Coat. Technol.
,
201
(
18
), pp.
7880
7888
.
11.
Launder
,
B. E.
,
1964
, “
Laminarization of the Turbulent Boundary Layer by Acceleration
,” Technical Report,
General Electric Company
.
12.
Bitter
,
M.
,
Hilfer
,
M.
,
Schubert
,
T.
,
Klein
,
C.
, and
Niehuis
,
R.
,
2022
, “
An Ultra-Fast TSP on a CNT Heating Layer for Unsteady Temperature and Heat Flux Measurements in Subsonic Flows
,”
Sensors
,
22
(
2
)
, p.
657
.
13.
Schroll
,
M.
,
Klinner
,
J.
,
Müller
,
M.
,
Matha
,
M.
,
Hilfer
,
M.
,
Tabassum
,
S.
,
Morsbach
,
C.
,
Brakmann
,
R.
, and
Willert
,
C.
,
2022
, “
Experimental and Numerical Investigation of a Multi-Jet Impingement Cooling Configuration
,”
20th International Symposium on Application of Laser and Imaging Techniques to Fluid Mechanics
, https://elib.dlr.de/187567/
14.
Schramm
,
J. M.
, and
Hilfer
,
M.
,
2020
, “Time Response Calibration of Ultra-Fast Temperature Sensitive Paints for the Application in High Temperature Hypersonic Flows,”
New Results in Numerical and Experimental Fluid Mechanics XII
,
A.
Dillmann
,
G.
Heller
,
E.
Krämer
,
C.
Wagner
,
C.
Tropea
, and
S.
Jakirlić
, eds.,
Springer International Publishing
, pp.
143
152
.
15.
Liu
,
T.
,
Sullivan
,
J. P.
,
Asai
,
K.
,
Klein
,
C.
, and
Egami
,
Y.
,
2021
,
Pressure and Temperature Sensitive Paints, No. 2 in Experimental Fluid Mechanics
, 2nd ed.,
Springer
,
Cham
.
16.
Petersen
,
A.
,
2021
, “
Einfluss Pneumatischer Wirbelgeneratoren auf die Effektivität Einer Gekühlten Hochdruck-Turbine
,”
Ph.D. thesis
,
TU Braunschweig
, https://elib.dlr.de/140673/
17.
Heinemann
,
H. J.
,
1983
, “
The Test Facility for Rectilinear Cascades (EGG) of the DFVLR
,”
DFVLR
,
Göttingen
.
18.
Rehder
,
H.-J.
,
Pahs
,
A.
,
Bittner
,
M.
, and
Kocian
,
F.
,
2017
, “
Next Generation Turbine Testing at DLR
,”
Proceedings of ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition
, Paper No. GT2017-64409.
19.
Candès
,
E. J.
,
Li
,
X.
,
Ma
,
Y.
, and
Wright
,
J.
,
2011
, “
Robust Principal Component Analysis?
J. Assoc. Comput. Mach.
,
58
(
3
), pp.
1
37
.
20.
Infra Tec GmbH Infrarotsensorik und Messtechnik
,
2015
, “Calibration Certificate,” Dresden.
21.
Korth Kristalle
,
2024
, “
Material Specification: Calcium Fluoride/RAMAN
,” Altenholz, https://www.korth.de/en/materials/detail/Calcium Fluoride / RAMAN
22.
Bons
,
J. P.
,
Taylor
,
R. P.
,
McClain
,
S. T.
, and
Rivir
,
R. B.
,
2001
, “
The Many Faces of Turbine Surface Roughness
,”
Vol. 3: Heat Transfer; Electric Power; Industrial and Cogeneration of Turbo Expo: Power for Land, Sea, and Air
.
23.
Thornton
,
J. A.
,
1977
, “
High Rate Thick Film Growth
,”
Annu. Rev. Mater. Sci.
,
7
(
1
), pp.
239
260
.
24.
Wheeler
,
A. P. S.
,
Sandberg
,
R. D.
,
Sandham
,
N. D.
,
Pichler
,
R.
,
Michelassi
,
V.
, and
Laskowski
,
G.
,
2016
, “
Direct Numerical Simulations of a High-Pressure Turbine Vane
,”
ASME J. Turbomach.
,
138
(
7
), p.
071003
.
25.
Towne
,
A.
,
Schmidt
,
O. T.
, and
Colonius
,
T.
,
2018
, “
Spectral Proper Orthogonal Decomposition and Its Relationship to Dynamic Mode Decomposition and Resolvent Analysis
,”
J. Fluid Mech.
,
847
, pp.
821
886
.
26.
Jones
,
W. P.
, and
Launder
,
B. E.
,
1972
, “
Some Properties of Sink-Flow Turbulent Boundary Layers
,”
J. Fluid Mech.
,
56
(
2
), pp.
337
351
.
27.
Michael
,
H.
,
Maximilian
,
B.
,
Christian
,
K.
,
Thomas
,
A.
,
Ulf
,
T.
,
Lars
,
K.
, and
Lars
,
E.
,
2022
, “Near-Field Measurements of Stationary and Rotating in Duct Sound Sources with Pressure-Sensitive Paint,” 28th AIAA/CEAS Aeroacoustics 2022 Conference,
Southampton, UK, June 14–17
.
You do not currently have access to this content.