Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Surge can lead to violent flow fluctuations in the compression system and damage to the blade structures. In this article, a fully three-dimensional numerical model of the centrifugal compressor surge is developed, and the accurate transient flow evolutions in different components during the surge are studied in detail. The results show that in the surge initiation, the pressure distortion caused by the asymmetric geometry of the volute at the diffuser outlet transfers along blade passages to the impeller inlet, which induces two types of stall cells with different rotating speeds and sizes developing independently in two isolated circumferential positions at the impeller inlet. With the surge development, the two types of stall cells come into contact and are mixed, which causes the asymmetric local reverse flow near the casing of the impeller leading edge. Subsequently, the reverse flow extends to the full annuls at the impeller inlet, and the compressor pressure ratio falls abruptly. At the same time, several expansion waves arise in the impeller and travel downstream along the volute and the outlet pipe. As reflected by the nozzle, these expansion waves travel back upstream into the impeller. The findings of this research have great implications for the asymmetric flow control methods, which develop novel asymmetric geometries to counteract the influence of the volute and extend the compressor stable operation range.

References

1.
Poujol
,
N.
,
Trébinjac
,
I.
, and
Duquesne
,
P.
,
2021
, “
Effects of Inlet Guide Vanes on the Performance and Stability of an Aeronautical Centrifugal Compressor
,”
ASME J. Turbomach.
,
143
(
10
), p.
101010
.
2.
Dehner
,
R.
,
Sriganesh
,
P.
,
Selamet
,
A.
, and
Miazgowicz
,
K.
,
2021
, “
Generation Mechanism of Broadband Whoosh Noise in an Automotive Turbocharger Centrifugal Compressor
,”
ASME J. Turbomach.
,
143
(
12
), p.
121003
.
3.
Miura
,
T.
,
Yamashita
,
H.
,
Takeuchi
,
R.
, and
Sakai
,
N.
,
2021
, “
Numerical and Experimental Study on Rotating Stall in Industrial Centrifugal Compressor
,”
ASME J. Turbomach.
,
143
(
8
), p.
081008
.
4.
Day
,
I. J.
,
2016
, “
Stall, Surge, and 75 Years of Research
,”
ASME J. Turbomach.
,
138
(
1
), p.
011001
.
5.
Spakovszky
,
Z.
,
2023
, “
Instabilities Everywhere! Hard Problems in Aero-Engines
,”
ASME J. Turbomach.
,
145
(
2
), p.
021011
.
6.
Greitzer
,
E. M.
,
1976
, “
Surge and Rotating Stall in Axial Flow Compressors—Part I: Theoretical Compression System Model
,”
J. Eng. Power
,
98
(
2
), pp.
190
198
.
7.
Greitzer
,
E. M.
,
1976
, “
Surge and Rotating Stall in Axial Flow Compressors—Part II : Experimental Results and Comparison With theory
,”
J. Eng. Power
,
98
(
2
), pp.
199
211
.
8.
Longley
,
J. P.
, and
Hynes
,
T. P.
,
1990
, “
Stability of Flow Through Multistage Axial Compressors
,”
ASME J. Turbomach.
,
112
(
1
), pp.
126
132
.
9.
Zhang
,
M.
,
Zheng
,
X.
, and
Sun
,
Z.
,
2019
, “
Experimental Investigation of the Flow Instability of a Compression System With an Upstream Plenum
,”
Exp. Therm. Fluid Sci.
,
102
, pp.
406
420
.
10.
Vahdati
,
M.
,
Sayma
,
A. I.
,
Freeman
,
C.
, and
Imregun
,
M.
,
2005
, “
On the Use of Atmospheric Boundary Conditions for Axial-Flow Compressor Stall Simulations
,”
ASME J. Turbomach.
,
127
(
2
), pp.
349
351
.
11.
Vahdati
,
M.
,
Simpson
,
G.
, and
Imregun
,
M.
,
2008
, “
Unsteady Flow and Aeroelasticity Behavior of Aeroengine Core Compressors During Rotating Stall and Surge
,”
ASME J. Turbomach.
,
130
(
3
), p.
031017
.
12.
Dodds
,
J.
, and
Vahdati
,
M.
,
2015
, “
Rotating Stall Observations in a High Speed Compressor—Part II: Numerical Study
,”
ASME J. Turbomach.
,
137
(
5
), p.
051003
.
13.
Zhao
,
F.
,
Dodds
,
J.
, and
Vahdati
,
M.
,
2018
, “
Poststall Behavior of a Multistage High Speed Compressor at Off-Design Conditions
,”
ASME J. Turbomach.
,
140
(
12
), p.
121002
.
14.
Zhang
,
W.
,
Vahdati
,
M.
, and
Zhao
,
F.
,
2020
, “
Impact of Exit Duct Dynamic Response on Compressor Stability
,”
ASME J. Turbomach.
,
142
(
11
), p.
111006
.
15.
Dehner
,
R.
,
Selamet
,
A.
,
Keller
,
P.
, and
Becker
,
M.
,
2016
, “
Simulation of Deep Surge in a Turbocharger Compression System
,”
ASME J. Turbomach.
,
138
(
11
), p.
111002
.
16.
Zeng
,
H.
,
Wang
,
B.
, and
Zheng
,
X.
,
2020
, “
The Role of Shaft-Speed Oscillation on the Instability Behavior of Transonic Radial Compressor
,”
Aerosp. Sci. Technol.
,
105
, p.
105982
.
17.
Huang
,
Q.
,
Zhang
,
M.
, and
Zheng
,
X.
,
2019
, “
Compressor Surge Based on a 1D-3D Coupled Method—Part 1: Method Establishment
,”
Aerosp. Sci. Technol.
,
90
, pp.
342
356
.
18.
Huang
,
Q.
,
Zhang
,
M.
, and
Zheng
,
X.
,
2019
, “
Compressor Surge Based on a 1D-3D Coupled Method—Part 2: Surge Investigation
,”
Aerosp. Sci. Technol.
,
90
, pp.
289
298
.
19.
Zhang
,
M.
,
Zheng
,
X.
,
Huang
,
Q.
, and
Sun
,
Z.
,
2019
, “
A Novel One-Dimensional–Three-Dimensional Coupled Method to Predict Surge Boundary of Centrifugal Compressors
,”
ASME J. Eng. Gas Turbines Power
,
141
(
7
), p.
071012
.
20.
Liśkiewicz
,
G.
,
Kulak
,
M.
,
Sobczak
,
K.
, and
Stickland
,
M.
,
2020
, “
Numerical Model of a Deep Surge Cycle in Low-Speed Centrifugal Compressor
,”
ASME J. Turbomach.
,
142
(
12
), p.
121005
.
21.
Zheng
,
X.
,
Sun
,
Z.
,
Kawakubo
,
T.
, and
Tamaki
,
H.
,
2018
, “
Stability Improvement of a Turbocharger Centrifugal Compressor by a Nonaxisymmetric Vaned Diffuser
,”
ASME J. Turbomach.
,
140
(
4
), p.
041007
.
22.
Sun
,
Z.
,
Zheng
,
X.
,
Tamaki
,
H.
, and
Kaneko
,
Y.
,
2019
, “
Flow Instability Suppression and Deep Surge Delay by Non-Axisymmetric Vaned Diffuser in a Centrifugal Compressor
,”
Aerosp. Sci. Technol.
,
95
, p.
105494
.
23.
Japikse
,
D.
,
1981
, “
Stall, Stage Stall, and Surge
,”
Proceedings of the 10th Turbomachinery Symposium
,
Texas A&M University, Turbomachinery Laboratories
.
24.
Japikse
,
D.
, and
Karon
,
D. M.
,
1989
, “
Laser Transit Anemometry Investigation of a High Speed Centrifugal Compressor
,”
Proceedings of the ASME 1989 International Gas Turbine and Aeroengine Congress and Exposition
,
Toronto, Ontario, Canada
,
June 4–8
.
25.
Weiß
,
C.
,
Grates
,
D. R.
,
Thermann
,
H.
, and
Niehuis
,
R.
,
2003
, “
Numerical Investigation of the Influence of the Tip Clearance on Wake Formation Inside a Radial Impeller
,”
Proceedings of ASME Turbo Expo
,
Atlanta, GA,
June 16–19
.
26.
Day
,
I. J.
,
1994
, “
Axial Compressor Performance During Surge
,”
J. Propuls. Power
,
10
(
3
), pp.
329
336
.
27.
White
,
F. M.
,
2016
,
Fluid Mechanics
,
McGraw-Hill Education
,
New York
.
28.
ANSYS
,
2020
,
ANSYS CFX-Solver Theory Guide
,
ANSYS, Inc.
,
Canonsburg, PA
.
29.
Zhang
,
M.
, and
Zheng
,
X.
,
2018
, “
Criteria for the Matching of Inlet and Outlet Distortions in Centrifugal Compressors
,”
Appl. Therm. Eng.
,
131
, pp.
933
946
.
30.
Brun
,
K.
,
Simons
,
S.
,
Kurz
,
R.
,
Munari
,
E.
,
Morini
,
M.
, and
Pinelli
,
M.
,
2018
, “
Measurement and Prediction of Centrifugal Compressor Axial Forces During Surge—Part I: Surge Force Measurements
,”
ASME J. Eng. Gas Turbines Power
,
140
(
1
), p.
012601
.
31.
Pletcher
,
R. H.
,
Tannehill
,
J. C.
, and
Anderson
,
D.
,
2012
,
Computational Fluid Mechanics and Heat Transfer
,
CRC Press
,
Boca Raton, FL
.
32.
Hiradate
,
K.
,
Joukou
,
S.
,
Sakamoto
,
K.
,
Shinkawa
,
Y.
, and
Uchiyama
,
T.
,
2016
, “
Investigation on Pressure Fluctuation Related to Mild Surge in Multistage Centrifugal Blower With Inlet Guide Vane
,”
ASME J. Turbomach.
,
138
(
11
), p.
111003
.
33.
Powers
,
K.
,
Kennedy
,
I.
,
Archer
,
J.
,
Eynon
,
P.
,
Horsley
,
J.
,
Brace
,
C.
,
Copeland
,
C.
, and
Milewski
,
P.
,
2022
, “
A New First-Principles Model to Predict Mild and Deep Surge for a Centrifugal Compressor
,”
Energy
,
244
, p.
123050
.
34.
Sun
,
Z.
,
Zheng
,
X.
,
Linghu
,
Z.
,
Kawakubo
,
T.
,
Tamaki
,
H.
, and
Wang
,
B.
,
2019
, “
Influence of Volute Design on Flow Field Distortion and Flow Stability of Turbocharger Centrifugal Compressors
,”
Proc. Inst. Mech. Eng. Part D J. Automob. Eng.
,
233
(
3
), pp.
484
494
.
35.
Moreno
,
J.
,
Dodds
,
J.
,
Sheaf
,
C.
,
Zhao
,
F.
, and
Vahdati
,
M.
,
2021
, “
Aerodynamic Loading Considerations of Three-Shaft Engine Compression System During Surge
,”
ASME J. Turbomach.
,
143
(
12
), p.
121002
.
You do not currently have access to this content.