Abstract

No common laminar kinetic energy (LKE) transition model has to date been able to predict both separation-induced and bypass transition, both phenomena commonly found in low-pressure turbines and high-pressure turbines. Here, a data-driven approach is adopted to develop a more general LKE transition model suitable for both transition modes. To achieve this, two strategies are adopted. The first is to extend the computational fluid dynamics (CFD)-driven model training framework for simultaneously training models on multiple turbine cases, subject to multiple objectives. By increasing the training data set, different transition modes can be considered. The second strategy employed is the use of a newly derived set of local non-dimensionalized variables as training inputs to reduce the search space. Because one of the training turbine cases is characterized by strong unsteady effects, for the first time an unsteady solver is utilized during the CFD-driven training, and the time-averaged results are used to calculate the cost function as part of the model development process. The results show that the data-driven models do perform better, in terms of their predictions of pressure coefficient, wall shear stress, and wake losses, than the baseline model. The models were then tested on two previously unseen testing cases, one at a higher Reynolds number and one with a different geometry. For both testing cases, stable solutions were obtained with results improved over the predictions using the baseline models.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Sandberg
,
R. D.
, and
Michelassi
,
V.
,
2019
, “
The Current State of High-Fidelity Simulations for Main Gas Path Turbomachinery Components and Their Industrial Impact
,”
Flow Turbul. Combust.
,
102
(
4
), pp.
797
848
.
2.
Michelassi
,
V.
,
Chen
,
L.-W.
,
Pichler
,
R.
, and
Sandberg
,
R. D.
,
2015
, “
Compressible Direct Numerical Simulation of Low-Pressure Turbines–Part II: Effect of Inflow Disturbances
,”
ASME J. Turbomach.
,
137
(
7
), p.
071005
.
3.
Mayle
,
R. E.
,
1991
, “
The 1991 IGTI Scholar Lecture: The Role of Laminar-Turbulent Transition in Gas Turbine Engines
,”
ASME J. Turbomach.
,
113
(
4
), pp.
509
536
.
4.
Ferreira
,
T. S.
,
Arts
,
T.
, and
Croner
,
E.
,
2019
, “
On the Influence of High Turbulence on the Convective Heat Flux on the High-Pressure Turbine Vane LS89
,”
Int. J. Turbomach. Propuls.
,
4
(
37
), pp.
2
19
.
5.
Thermann
,
H.
,
Müller
,
M.
, and
Niehuis
,
R.
,
2001
, “
Numerical Simulation of the Boundary Layer Transition in Turbomachinery Flows
,” In Turbo Expo: Power for Land, Sea, and Air, Vol.
78521
American Society of Mechanical Engineers
, p. V003T01A088.
6.
Dick
,
E.
, and
Kubacki
,
S.
,
2017
, “
Transition Models for Turbomachinery Boundary Layer Flows: a Review
,”
Int. J. Turbomach. Propuls.
,
2
(
2
), p.
4
.
7.
Steelant
,
J.
, and
Dick
,
E.
,
1996
, “
Modelling of Bypass Transition With Conditioned Navier–Stokes Equations Coupled to an Intermittency Transport Equation
,”
Int. J. Numer. Methods Fluids
,
23
(
3
), pp.
193
220
.
8.
Fürst
,
J.
,
Příhoda
,
J.
, and
Straka
,
P.
,
2013
, “
Numerical Simulation of Transitional Flows
,”
Computing
,
95
(
1
), pp.
163
182
.
9.
Kožulović
,
D.
, and
Lapworth
,
B. L.
,
2009
, “
An Approach for Inclusion of a Nonlocal Transition Model in a Parallel Unstructured Computational Fluid Dynamics Code
,”
ASME J. Turbomach.
,
131
(
3
), p.
031008
.
10.
Menter
,
F. R.
,
Langtry
,
R. B.
,
Likki
,
S.
,
Suzen
,
Y.
,
Huang
,
P.
, and
Völker
,
S.
,
2006
, “
A Correlation-Based Transition Model Using Local Variables-Part I: Model Formulation
,”
ASME J. Turbomach.
,
128
(
7
), pp.
413
422
.
11.
Ge
,
X.
,
Arolla
,
S.
, and
Durbin
,
P.
,
2014
, “
A Bypass Transition Model Based on the Intermittency Function
,”
Flow Turbul. Combust.
,
93
(
1
), pp.
37
61
.
12.
Lodefier
,
K.
, and
Dick
,
E.
,
2006
, “
Modelling of Unsteady Transition in Low-Pressure Turbine Blade Flows With Two Dynamic Intermittency Equations
,”
Flow Turbul. Combust.
,
76
(
2
), pp.
103
132
.
13.
Mayle
,
R.
, and
Schulz
,
A.
,
1996
, “
The Path to Predicting Bypass Transition
,” Turbo Expo: Power for Land, Sea, and Air, Vol. 78729,
American Society of Mechanical Engineers
, p.
V001T01A065
.
14.
Lardeau
,
S.
,
Li
,
N.
, and
Leschziner
,
M. A.
,
2007
, “
Large Eddy Simulation of Transitional Boundary Layers at High Free-Stream Turbulence Intensity and Implications for RANS Modeling
,”
ASME J. Turbomach.
,
129
(
2
), pp.
311
317
.
15.
Walters
,
D. K.
, and
Leylek
,
J. H.
,
2004
, “
A New Model for Boundary Layer Transition Using a Single-Point Rans Approach
,”
ASME J. Turbomach.
,
126
(
1
), pp.
193
202
.
16.
Walters
,
D. K.
, and
Leylek
,
J. H.
,
2005
, “
Computational Fluid Dynamics Study of Wake-Induced Transition on a Compressor-Like Flat Plate
,”
ASME J. Turbomach.
,
127
(
1
), pp.
52
63
.
17.
Walters
,
D. K.
, and
Cokljat
,
D.
,
2008
, “
A Three-Equation Eddy-Viscosity Model for Reynolds-Averaged Navier–Stokes Simulations of Transitional Flow
,”
ASME J. Fluids Eng.
,
130
(
12
), p.
121401
.
18.
Lardeau
,
S.
,
Leschziner
,
M.
, and
Li
,
N.
,
2004
, “
Modelling Bypass Transition With Low-Reynolds-Number Nonlinear Eddy-Viscosity Closure
,”
Flow Turbul. Combust.
,
73
(
1
), pp.
49
76
.
19.
Pacciani
,
R.
,
Marconcini
,
M.
,
Fadai-Ghotbi
,
A.
,
Lardeau
,
S.
, and
Leschziner
,
M. A.
,
2011
, “
Calculation of High-Lift Cascades in Low Pressure Turbine Conditions Using a Three-Equation Model
,”
ASME J. Turbomach.
,
133
(
3
), p.
031016
.
20.
Duraisamy
,
K.
, and
Durbin
,
P.
,
2014
, “
Transition Modeling Using Data Driven Approaches
,”
Proceedings of the Summer Program
,
Standford, CA
,
June 22–Aug. 1
, p.
427
.
21.
Yang
,
M.
, and
Xiao
,
Z.
,
2020
, “
Improving the K–ωγ–Ar Transition Model by the Field Inversion and Machine Learning Framework
,”
Phys. Fluids
,
32
(
6
), p.
064101
.
22.
Wu
,
L.
,
Cui
,
B.
, and
Xiao
,
Z.
,
2022
, “
Two-Equation Turbulent Viscosity Model for Simulation of Transitional Flows: An Efficient Artificial Neural Network Strategy
,”
Phys. Fluids
,
34
(
10
), p.
105112
.
23.
Akolekar
,
H. D.
,
Waschkowski
,
F.
,
Zhao
,
Y.
,
Pacciani
,
R.
, and
Sandberg
,
R. D.
,
2021
, “
Transition Modeling for Low Pressure Turbines Using Computational Fluid Dynamics Driven Machine Learning
,”
Energies
,
14
(
15
), p.
4680
.
24.
Akolekar
,
H. D.
,
Waschkowski
,
F.
,
Pacciani
,
R.
,
Zhao
,
Y.
, and
Sandberg
,
R. D.
,
2022
, “
Multi-objective Development of Machine-Learnt Closures for Fully Integrated Transition and Wake Mixing Predictions in Low Pressure Turbines
,” In Turbo Expo: Power for Land, Sea, and Air, Vol.
86113
,
American Society of Mechanical Engineers
, p.
V10CT32A013
.
25.
Waschkowski
,
F.
,
Zhao
,
Y.
,
Sandberg
,
R.
, and
Klewicki
,
J.
,
2022
, “
Multi-objective CFD-Driven Development of Coupled Turbulence Closure Models
,”
J. Comput. Phys.
,
452
, p.
110922
.
26.
White
,
F. M.
,
1979
,
Fluid Mechanics
,
Tata McGraw-Hill Education, New Delhi
.
27.
Akolekar
,
H. D.
,
Zhao
,
Y.
,
Sandberg
,
R. D.
, and
Pacciani
,
R.
,
2021
, “
Integration of Machine Learning and Computational Fluid Dynamics to Develop Turbulence Models for Improved Low-Pressure Turbine Wake Mixing Prediction
,”
ASME J. Turbomach.
,
143
(
12
), p.
121001
.
28.
Pope
,
S. B.
,
1975
, “
A More General Effective-Viscosity Hypothesis
,”
J. Fluid Mech.
,
72
(
2
), pp.
331
340
.
29.
Gatski
,
T. B.
, and
Speziale
,
C. G.
,
1993
, “
On Explicit Algebraic Stress Models for Complex Turbulent Flows
,”
J. Fluid. Mech.
,
254
, pp.
59
78
.
30.
Zhao
,
Y.
,
Akolekar
,
H. D.
,
Weatheritt
,
J.
,
Michelassi
,
V.
, and
Sandberg
,
R. D.
,
2020
, “
RANS Turbulence Model Development Using CFD-Driven Machine Learning
,”
J. Comput. Phys.
,
411
, p.
109413
.
31.
Arnone
,
A.
,
Liou
,
M.-S.
, and
Povinelli
,
L. A.
,
1992
, “
Navier-Stokes Solution of Transonic Cascade Flows Using Nonperiodic C-Type Grids
,”
J. Propuls. Power
,
8
(
2
), pp.
410
417
.
32.
Akolekar
,
H. D.
,
2019
, “
Turbulence Model Development and Implementation for Low Pressure Turbines using a Machine Learning Approach
,” Ph.D. thesis, University of Melbourne, Melbourne, Australia.
33.
Pacciani
,
R.
,
Marconcini
,
M.
,
Arnone
,
A.
, and
Bertini
,
F.
,
2011
, “
An Assessment of the Laminar Kinetic Energy Concept for the Prediction of High-Lift, Low-Reynolds Number Cascade Flows
,”
P. I. Mech. Eng. A-J Pow.
,
225
(
7
), pp.
995
1003
.
34.
Himmel
,
C.
,
Thomas
,
R.
, and
Hodson
,
H.
,
2009
, “
Effective Passive Flow Control for Ultra-High Lift Low Pressure Turbines
,” In Eighth European Conference on Turbomachinery Fluid Dynamics and Thermodynamics, Mar. 23–27,
Gratz, Austria
.
35.
Bons
,
J. P.
,
Sondergaard
,
R.
, and
Rivir
,
R. B.
,
2001
, “
Turbine Separation Control Using Pulsed Vortex Generator Jets
,”
ASME J. Turbomach.
,
123
(
2
), pp.
198
206
.
36.
Pichler
,
R.
,
Sandberg
,
R. D.
,
Laskowski
,
G.
, and
Michelassi
,
V.
,
2017
, “
High-Fidelity Simulations of a Linear HPT Vane Cascade Subject to Varying Inlet Turbulence
,” Turbo Expo: Power for Land, Sea, and Air, Vol.
50787
,
American Society of Mechanical Engineers
, p.
V02AT40A001
.
37.
Walters
,
D.
,
2009
, “
Physical Interpretation of Transition-Sensitive Rans Models Employing the Laminar Kinetic Energy Concept
,”
ERCOFTAC Bulletin
,
80
, pp.
67
71
.
38.
Kubacki
,
S.
, and
Dick
,
E.
,
2016
, “
An Algebraic Intermittency Model for Bypass, Separation-induced and Wake-Induced Transition
,”
Int. J. Heat and Fluid Flow
,
62
, pp.
344
361
.
39.
Jacobs
,
R. G.
, and
Durbin
,
P. A.
,
1998
, “
Shear Sheltering and the Continuous Spectrum of the ORR-Sommerfeld Equation
,”
Phys. Fluids
,
10
(
8
), pp.
2006
2011
.
40.
Jacobs
,
R.
, and
Durbin
,
P.
,
2001
, “
Simulations of Bypass Transition
,”
J. Fluid. Mech.
,
428
, pp.
185
212
.
41.
Zaki
,
T. A.
,
2013
, “
From Streaks to Spots and on to Turbulence: Exploring the Dynamics of Boundary Layer Transition
,”
Flow, Turbul. Combust.
,
91
, pp.
451
473
.
42.
Fang
,
Y.
,
Zhao
,
Y.
,
Waschkowski
,
F.
,
Ooi
,
A. S.
, and
Sandberg
,
R. D.
,
2023
, “
Toward More General Turbulence Models Via Multicase Computational-Fluid-Dynamics-Driven Training
,”
AIAA J.
,
61
, pp.
1
16
.
You do not currently have access to this content.