Abstract

Over recent years, the aeroelastic problem of fan blades has become significantly serious due to the demand for high performance of aero-engines. To explore the aeroelastic issue of flutter, fan instability is represented by the aerodynamic damping. When the inlet condition is uniform, aerodynamic damping is mainly caused by the temporal factor, and the classic flutter usually does not occur due to the usage of mistuning. However, with the existence of circumferentially non-uniform components in the distorted inflow, aerodynamic damping is also affected by the spatial factor, which may alter the occurrence mechanism of classic flutter. To investigate this issue, the full-annulus 3D (three-dimensional) unsteady calculation is conducted on a transonic fan NASA Rotor 67 with a typical circumferential distortion inflow. As demonstrated by the energy method for the rotor blades at each nodal diameter, the coefficients of aerodynamic damping contain an interval value rather than a fixed datum. Some of the blades have positive damping, and others are negative. The positive and negative aerodynamic damping is determined by the relative position between the rotor blade and the distorted region in the circumferential direction. Furthermore, a fast calculation method based on the fundamental principle regarding flow periodicity is developed to obtain the aerodynamic damping at different nodal diameters under non-uniform inlet conditions.

References

1.
Biollo
,
R.
, and
Benini
,
E.
,
2013
, “
Recent Advances in Transonic Axial Compressor Aerodynamics
,”
Prog. Aerosp. Sci.
,
56
, pp.
1
18
.
2.
Steffens
,
K.
,
2001
,
Advanced Compressor Technology–Key Success Factor for Competitiveness in Modern Aero Engines
, MTU Aero Engines Internal Report and 15th ISABE, Paper No. 2001-1009.
3.
Bendiksen
,
O. O.
,
1988
, “
Recent Developments in Flutter Suppression Techniques for Turbomachinery Rotors
,”
J. Propul. Power
,
4
(
2
), pp.
164
171
.
4.
Srinivasan
,
A. V.
,
1997
, “
Flutter and Resonant Vibration Characteristics of Engine Blades
,”
ASME J. Eng. Gas Turbines Power
,
19
(
4
), pp.
742
775
.
5.
Jeffers
,
J. D.
, and
Meece
,
C. E.
,
1975
, “
F100 Fan Stall Flutter Problem Review and Solution
,”
J. Aircr.
,
12
(
4
), pp.
350
358
.
6.
Carta
,
F. O.
, and
St. Hilaire
,
A. O.
,
1978
, “
Experimentally Determined Stability Parameters of a Subsonic Cascade Oscillating Near Stall
,”
ASME J. Eng. Power
,
100
(
1
), pp.
111
120
.
7.
Carta
,
F. O.
, and
St. Hilaire
,
A. O.
,
1980
, “
Effect of Inter-Blade Phase Angle and Incidence Angle on Cascade Pitching Stability
,”
ASME J. Eng. Power
,
102
(
2
), pp.
391
396
.
8.
Carta
,
F. O.
,
1983
, “
Unsteady Aerodynamics and Gap Wise Periodicity of Oscillating Cascaded Airfoils
,”
ASME J. Eng. Gas Turbines Power
,
105
(
3
), pp.
565
574
.
9.
Buffum
,
D. H.
,
Capece
,
V. R.
,
King
,
A. J.
, and
El-Aini
,
Y.
,
1996
,
Experimental Investigation of Unsteady Flows at Large Incidence Angles in a Linear Oscillating Cascade
, AIAA Paper No. 96-2823.
10.
Buffum
,
D. H.
,
Capece
,
V. R.
,
King
,
A. J.
, and
El-Aini
,
Y.
,
1998
, “
Oscillating Cascade Aerodynamics At Large Mean Incidence
,”
ASME J. Turbomach.
,
120
(
1
), pp.
122
130
.
11.
Eret
,
P.
, and
Tsymbalyuk
,
V.
,
2023
, “
Experimental Subsonic Flutter of a Linear Turbine Blade Cascade With Various Mode Shapes and Chordwise Torsion Axis Locations
,”
ASME J. Turbomach.
,
145
(
6
), p.
061002
.
12.
Kaza
,
K.
, and
Kielb
,
R. E.
,
1982
, “
Flutter and Response of a Mistuned Cascade in Incompressible Flow
,”
AIAA J.
,
20
(
8
), pp.
1120
1127
.
13.
Sadeghi
,
M.
, and
Liu
,
F.
,
2001
, “
Computation of Mistuning Effects on Cascade Flutter
,”
AIAA J.
,
39
(
1
), pp.
22
28
.
14.
Kielb
,
R. E.
, and
Kaza
,
K.
,
1984
, “
Effects of Structural Coupling on Mistuned Cascade Flutter and Response
,”
ASME J. Eng. Gas Turbines Power
,
106
(
1
), pp.
17
24
.
15.
Defoe
,
J. J.
, and
Spakovszky
,
Z. S.
,
2013
, “
Effects of Boundary-Layer Ingestion on the Aero-Acoustics of Transonic Fan Rotors
,”
ASME J. Turbomach.
,
135
(
5
), p.
051013
.
16.
Gunn
,
E. J.
, and
Hall
,
C. A.
,
2014
,
Aerodynamics of Boundary Layer Ingesting Fans
, ASME Paper No. GT2014-26142.
17.
Herrick
,
G. P.
,
2010
,
Assessing Fan Flutter Stability in Presence of Inlet Distortion Using One-Way and Two-Way Coupled Methods
, AIAA Paper No. 2014-3733.
18.
Herrick
,
G. P.
,
2010
, “
Effects of Inlet Distortion on Aeromechanical Stability of a Forward-Swept High-Speed Fan
,”
Proceedings of the 46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit
,
Nashville, TN
,
July 25–28
, pp.
1
14
.
19.
Sanders
,
A. J.
,
Hassan
,
K. K.
, and
Rabe
,
D. C.
,
2004
, “
Experimental and Numerical Study of Stall Flutter in a Transonic Low-Aspect Ratio Fan Blisk
,”
ASME J. Turbomach.
,
126
(
1
), pp.
166
174
.
20.
Marshall
,
J. G.
, and
Imregun
,
M.
,
1996
, “
A Review of Aeroelasticity Methods With Emphasis on Turbomachinery Applications
,”
J. Fluids Struct.
,
10
(
3
), pp.
237
267
.
21.
Cebeci
,
T.
,
Platzer
,
M. F.
,
Jang
,
H. M.
, et al,
Chen
H. H.
,
1993
, “
An Inviscid-Viscous Interaction Approach to the Calculation of Dynamic Stall Initiation on Airfoils
,”
ASME J. Turbomach.
,
115
(
4
), pp.
714
723
.
22.
Lee
,
C. L.
,
1986
, “
An Iterative Procedure for Nonlinear Flutter Analysis
,”
AIAA J.
,
24
(
5
), pp.
833
840
.
23.
Dunn
,
P.
, and
Dugundji
,
J.
,
1992
, “
Nonlinear Stall Flutter and Divergence Analysis of Cantilevered Graphite/Epoxy Wings
,”
AIAA J.
,
30
(
1
), pp.
153
162
.
24.
Tatum
,
K. E.
, and
Giles
,
G.
,
1988
, “
Integrating Nonlinear Aerodynamic and Structural Analysis for a Complete Fighter Configuration
,”
J. Aircr.
,
25
(
12
), pp.
1150
1156
.
25.
Sisto
,
F.
,
Thangam
,
S.
, and
Abdel-Rahim
,
A.
,
1991
, “
Computational Prediction of Stall Flutter in Cascaded Airfoils
,”
AIAA J.
,
29
(
7
), pp.
1161
1167
.
26.
Gnesin
,
V.
,
Rzadkowski
,
R.
, and
Kolodyazhnaya
,
L.
,
2000
,
A Coupled Fluid-Structure Analysis for 3D Flutter in Turbomachines
, ASME Paper No. GT2000-0380.
27.
Zheng
,
Y.
, and
Yang
,
H.
,
2011
, “
Coupled Fluid-Structure Flutter Analysis of a Transonic Fan
,”
Chin. J. Aeronaut.
,
24
(
3
), pp.
258
264
.
28.
Zhang
,
M.
,
Hou
,
A.
,
Zhou
,
S.
, and
Yang
,
X.
,
2012
,
Analysis on Flutter Characteristics of Transonic Compressor Blade Row by A Fluid-Structure Coupled Method
, ASME Paper No. GT2012-69439.
29.
Carta
,
F. O.
,
1967
, “
Coupled Blade-Disk-Shroud Flutter Instabilities in Turbojet Engine Rotors
,”
ASME J. Eng. Gas Turbines Power
,
89
(
3
), pp.
419
426
.
30.
Snyder
,
L. E.
, and
Commerford
,
G. L.
,
1974
, “
Supersonic Unstalled Flutter in Fan Rotors; Analytical and Experimental Results
,”
ASME J. Eng. Gas Turbines Power
,
96
(
4
), pp.
379
386
.
31.
Mikolajczak
,
A.
,
Arnoldi
,
R. A.
,
Snyder
,
L. E.
, and
Stargardter
H.
,
1975
, “
Advances in Fan and Compressor Blade Flutter Analysis and Predictions
,”
J. Aircr.
,
12
(
4
), pp.
325
332
.
32.
Bendiksen
,
O. O.
,
1993
,
Aeroelastic Problems in Turbomachines
, AIAA Paper No. 90-1157-CP.
33.
Kielb
,
R. E.
, and
Chiang
,
H. D.
,
1992
,
Recent Advancements in Turbomachinery Forced Response Analyses
, AIAA Paper No. 92-0012.
34.
Strazisar
,
A. J.
,
Wood
,
J. R.
,
Hathaway
,
M. D.
, and
Suder
,
K. L.
,
1989
,
Laser Anemometer Measurements in a Transonic Axial-Flow Fan Rotor
, NASA Technical Paper No. 1989-2879.
35.
Gelder
,
T. F.
,
Schmidt
,
J. F.
, and
Suder
,
K. L.
,
1987
,
Design and Performance of Controlled Diffusion Stator Compared With Original Double-Circular-Arc Stator
, NASA Technical Paper No. 1987-C-25.
36.
Cong
,
J. Q.
,
Jing
,
J. P.
,
Dai
,
Z. Z.
,
Cheng
,
J.
, and
Chen
,
C.
,
2021
, “
Influence of Circumferential Grooves on the Aerodynamic and Aeroelastic Stabilities of a Transonic Fan
,”
Aerosp. Sci. Technol.
,
117
, p.
106945
.
37.
Huang
,
H.
,
Liu
,
W.
,
Petrie-Repar
,
P.
, and
Wang
,
D.
,
2021
, “
An Efficient Aeroelastic Eigenvalue Method for Analyzing Coupled-Mode Flutter in Turbomachinery
,”
ASME J. Turbomach.
,
143
(
3
), p.
021010
.
38.
Zheng
,
Y.
,
Gao
,
Q. Z.
, and
Yang
,
H.
,
2023
, “
Non-Synchronous Blade Vibration Analysis of a Transonic Fan
,”
Chin. J. Aeronaut.
,
36
(
1
), pp.
178
190
.
39.
Pan
,
T. Y.
,
Yan
,
Z. Q.
,
Lu
,
H. N.
,
Li
,
Q.
, and
Kielb
R. E.
,
2023
, “
Forced Response Induced by Low Engine Order Under Circumferential Inlet Distortions With Different Extents
,”
ASME J. Turbomach.
,
145
(
4
), p.
041012
.
40.
Launder
,
B. E.
, and
Spalding
,
D. B.
,
1974
, “
The Numerical Computation of Turbulent Flows
,”
Comput. Methods Appl. Mech. Eng.
,
3
(
2
), pp.
269
289
.
41.
Stuart
,
M.
,
2006
, “
Forced Response Prediction for Industrial Gas Turbine Blades
,”
PhD thesis
,
University of Durham
,
Durham, UK
, pp.
108
-
122
.
42.
He
,
L.
,
1990
, “
A Euler Solution for Unsteady Flows Around Oscillating Blades
,”
ASME J. Turbomach.
,
112
(
4
), pp.
714
722
.
43.
Stuart
,
M.
, and
He
,
L.
,
2003
,
Blade Forced Response Prediction for Industrial Gas Turbines, Part I: Methodologies
, ASME Turbo Expo No. GT2003-38640.
44.
Lane
,
F.
,
1956
, “
System Mode Shapes in the Flutter of Compressor Blade Rows
,”
J. Aeronaut. Sci.
,
23
(
1
), pp.
54
66
.
45.
Zhou
,
D.
,
Lu
,
Z. L.
,
Guo
,
T. Q.
, and
Chen
,
G.
,
2021
, “
Aeroelastic Prediction and Analysis for a Transonic Fan Rotor With the Hot Blade Shape
,”
Chin. J. Aeronaut.
,
34
(
7
), pp.
50
61
.
46.
Martensson
,
H.
,
2021
, “
Harmonic Forcing From Distortion in a Boundary Layer Ingesting Fan
,”
Aerospace
,
8
(
3
), p.
58
.
You do not currently have access to this content.