Abstract

The aerodynamic flow field at the outlet of a high-pressure turbine (HPT) stage in a modern turbofan engine is highly unsteady and strongly influenced by periodic fluctuations from the HPT rotor, also interacting with the HPT stationary vanes. Downstream of the last HPT stage, the flow enters the intermediate turbine duct (ITD), where new unsteady components are generated, due to the interaction between the incoming flow and the struts supporting the ITD. This paper illustrates the differences between the unsteady flow behavior in two state-of-the-art ITD configurations for turbofan engines: the turbine center frame and the turbine vane frame. The experimental results discussed in this work are obtained in the Transonic Test Turbine Facility, situated at Graz University of Technology, Austria. To achieve engine-representative operating conditions at the ITD inlet and outlet sections, the tested setups include not only the duct, but also the last HPT stage and the first low-pressure turbine stage row. Additionally, the test rig features a secondary air supply system, capable of feeding purge air to every stator–rotor cavity in the test vehicle. Unsteady measurement data at the inlet and outlet of the two duct configurations are acquired with fast-response aerodynamic pressure probes, for two purge flow conditions. Azimuthal mode decomposition is applied to phase-averaged data at selected radial positions, to isolate and quantify the contribution of different interaction modes to the overall unsteady flow field.

References

1.
Dominy
,
R. G.
, and
Kirkham
,
D. A.
,
1994
, “
The Influence of Blade Wakes on the Performance of Inter-Turbine Diffusers
,”
ASME International Gas Turbine and Aeroengine Congress and Exposition
, Volume 1, p.
V001T01A072
.
2.
Dominy
,
R. G.
,
Kirkham
,
D. A.
, and
Smith
,
A. D.
,
1998
, “
Flow Development Through Interturbine Diffusers
,”
ASME J. Turbomach.
,
120
(
2
), pp.
298
304
.
3.
Göttlich
,
E.
,
2011
, “
Research on the Aerodynamics of Intermediate Turbine Diffusers
,”
Prog. Aerosp. Sci.
,
47
(
4
), pp.
249
279
.
4.
Spataro
,
R.
,
Göttlich
,
E.
,
Lengani
,
D.
,
Faustmann
,
C.
, and
Heitmeir
,
F.
,
2014
, “
Development of a Turning Mid Turbine Frame With Embedded Design. Part I: Design and Steady Measurements
,”
ASME J. Turbomach.
,
136
(
7
), p.
071008
.
5.
Sovran
,
G.
, and
Klomp
,
E. D.
,
1967
, “Experimentally Determined Optimum Geometries for Rectilinear Diffusers with Rectangular, Conical or Annular Cross-Section,”
Fluid Mechanics of Internal Flow
,
G.
Sovran
, ed.,
Elsevier
,
Amsterdam, The Netherlands
, pp.
270
319
.
6.
Paniagua
,
G.
,
Dénos
,
R.
, and
Almeida
,
S.
,
2004
, “
Effect of the Hub Endwall Cavity Flow on the Flow-Field of a Transonic High-Pressure Turbine
,”
ASME J. Turbomach.
,
126
(
4
), pp.
578
586
.
7.
Ong
,
J.
,
Miller
,
R. J.
, and
Uchida
,
S.
,
2012
, “
The Effect of Coolant Injection on the Endwall Flow of a High Pressure Turbine
,”
ASME J. Turbomach.
,
134
(
5
), p.
051003
.
8.
Regina
,
K.
,
Kalfas
,
A. I.
, and
Abhari
,
R. S.
,
2014
, “
Experimental Investigation of Purge Flow Effects on a High Pressure Turbine Stage
,”
ASME J. Turbomach.
,
137
(
4
), p.
041006
.
9.
Sanz
,
W.
,
Zerobin
,
S.
,
Egger
,
M.
,
Bader
,
P.
,
Pieringer
,
P.
,
Göttlich
,
E.
, and
Heitmeir
,
F.
,
2018
, “
Steady CFD Simulation of a High Pressure Turbine Rotor With Hub and Shroud Purge Flow
,”
ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition
,
Lillestrøm, Norway
,
June 11–15
.
10.
Zerobin
,
S.
,
Perters
,
A.
,
Marn
,
A.
,
Heitmeir
,
F.
, and
Goettlich
,
E.
,
2018
, “
Impact of Purge Flows on the Unsteady HPT Stator-Rotor Interaction
,” Proceedings of GPPS Forum 18 Global Power and Propulsion Society (GPPS-2018-0026).
11.
Zerobin
,
S.
,
Bauinger
,
S.
,
Marn
,
A.
,
Peters
,
A.
,
Heitmeir
,
F.
, and
Göttlich
,
E.
,
2017
, “
The Unsteady Flow Field of a Purged High Pressure Turbine Based on Mode Detection
,” ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition, p.
V02DT46A008
.
12.
Merli
,
F.
,
Sterzinger
,
P. Z.
,
Dellacasagrande
,
M.
,
Wiesinger
,
L.
,
Peters
,
A.
,
Heitmeir
,
F.
, and
Göttlich
,
E.
,
2020
, “
Unsteady Effects Due to Rotor Purge Flow Variations in a Dual-Spool Turbine Setup
,”
ASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition
,
Online Event
,
June 22–26
.
13.
Lavagnoli
,
S.
,
Yasa
,
T.
,
Paniagua
,
G.
,
Castillon
,
L.
, and
Duni
,
S.
,
2012
, “
Aerodynamic Analysis of an Innovative Low Pressure Vane Placed in an S-Shape Duct
,”
ASME J. Turbomach.
,
134
(
1
), p.
011013
.
14.
Lengani
,
D.
,
Selic
,
T.
,
Spataro
,
R.
,
Marn
,
A.
, and
Göttlich
,
E.
,
2012
, “
Analysis of the Unsteady Flow Field in Turbines by Means of Modal Decomposition
,” ASME Turbo Expo 2012: Turbine Technical Conference and Exposition, Paper No.
GT2012-68582
.
15.
Merli
,
F.
,
Hafizovic
,
A.
,
Krajnc
,
N.
,
Schien
,
M.
,
Peters
,
A.
,
Heitmeir
,
F.
, and
Göttlich
,
E.
,
2023
, “
The Interaction of Main Stream Flow and Cavity Flows in Turbine Center Frames and Turbine Vane Frames
,”
ASME J. Eng. Gas Turbines Power
,
145
(
2
), p.
021027
.
16.
Marn
,
A.
,
Göttlich
,
E.
,
Cadrecha
,
D.
, and
Pirker
,
H. P.
,
2009
, “
Shorten the Intermediate Turbine Duct Length by Applying an Integrated Concept
,”
ASME J. Turbomach.
,
131
(
4
), p.
041014
.
17.
Lengani
,
D.
,
Spataro
,
R.
,
Paradiso
,
B.
, and
Göttlich
,
E.
,
2015
, “
Unsteady Flow Evolution Through a Turning Midturbine Frame Part 1: Time-Resolved Flow
,”
J. Propul. Power
,
31
(
6
), pp.
1586
1596
.
18.
Bauinger
,
S.
,
Malzacher
,
F.
,
Goettlich
,
E.
, and
Heitmeir
,
F.
,
2017
, “
Influence of Backward- and Forward-Facing Steps on the Flow Through a Turning Mid Turbine Frame
,”
ASME J. Turbomach.
,
139
(
12
), p.
121005
.
19.
Sterzinger
,
P. Z.
,
Merli
,
F.
,
Peters
,
A.
,
Behre
,
S.
,
Heitmeir
,
F.
, and
Göttlich
,
E.
,
2021
, “
Impact of Turbine–Strut Clocking on the Performance of a Turbine Center Frame
,”
ASME J. Turbomach.
,
143
(
5
), p.
051011
.
20.
Erhard
,
G.
, and
Gehrer
,
A.
,
2000
, “
Design and Construction of a Transonic Test Turbine Facility
,”
ASME Turbo Expo 2000: Power for Land, Sea, and Air
,
Munich, Germany
,
May 8–11
.
21.
Hubinka
,
J.
,
Santner
,
C.
,
Paradiso
,
B.
,
Malzacher
,
F.
,
Göttlich
,
E.
, and
Heitmeir
,
F.
,
2009
, “
Design and Construction of a Two Shaft Test Turbine for Investigation of Mid Turbine Frame Flows
,”
19th International Symposium on Air-Breathing Engines
,
Montreal, Canada
,
Sept. 7–11
.
22.
Hubinka
,
J.
,
Paradiso
,
B.
,
Santner
,
C.
,
Pirker
,
H.-P.
, and
Göttlich
,
E.
,
2011
, “
Design and Operation of a Two Spool High Pressure Test Turbine Facility
,”
9th European Conference on Turbomachinery Fluid dynamics & Thermodynamics
,
Instanbul, Turkey
,
Mar. 21–25
.
23.
Steiner
,
M.
,
Zerobin
,
S.
,
Bauinger
,
S.
,
Heitmeir
,
F.
, and
Göttlich
,
E.
,
2017
, “
Development and Commissioning of a Purge Flow System in a Two Spool Test Facility
,” 12th European Conference on Turbomachinery Fluid Dynamics & Thermodynamics, Paper No.
ETC2017-115
.
24.
Patinios
,
M.
,
Merli
,
F.
,
Hafizovic
,
A.
, and
Göttlich
,
E.
,
2021
, “
The Interaction of Purge Flows With Secondary Flow Features in Turbine Center Frames
,”
ASME Turbo Expo 2021: Turbomachinery Technical Conference and Exposition
,
Online Event
,
June 7-11
.
25.
Gaetani
,
P.
, and
Persico
,
G.
,
2020
, “
Technology Development of Fast-Response Aerodynamic Pressure Probes
,”
Int. J. Turbomach. Propul. Power
,
5
(
2
), p.
6
.
26.
Faustmann
,
C.
, and
Göttlich
,
E.
,
2014
, “
Aerodynamics and Acoustics of Turning Mid Turbine Frames in a Two-Shaft Test Turbine
,”
ASME Turbo Expo 2014: Turbine Technical Conference and Exposition
,
Düsseldorf, Germany
,
June 16–20
.
27.
Kupferschmied
,
P.
,
Köppel
,
P.
,
Gizzi
,
W.
,
Roduner
,
C.
, and
Gyarmathy
,
G.
,
2000
, “
Time-Resolved Flow Measurements With Fast-Response Aerodynamic Probes in Turbomachines
,”
Meas. Sci. Technol.
,
11
(
7
), p.
1036
.
28.
Hussain
,
A. K. M. F.
, and
Reynolds
,
W. C.
,
1970
, “
The Mechanics of an Organized Wave in Turbulent Shear Flow
,”
J. Fluid. Mech.
,
41
(
2
), pp.
241
258
.
29.
Sharma
,
O. P.
,
Butler
,
T. L.
,
Joslyn
,
H. D.
, and
Dring
,
R. P.
,
1985
, “
Three-Dimensional Unsteady Flow in an Axial Flow Turbine
,”
J. Propul. Power
,
1
(
1
), pp.
29
38
.
30.
Suder
,
K. L.
,
Okiishi
,
T. H.
,
Hathaway
,
M. D.
,
Strazisar
,
A. J.
, and
Adamczyk
,
J. J.
,
1987
, “
Measurements of the Unsteady Flow Field Within the Stator Row of a Transonic Axial-Flow Fan: I–Measurement and Analysis Technique
,”
ASME 1987 International Gas Turbine Conference and Exhibition
,
Anaheim, CA
,
May 31– June 4
.
31.
Courtiade
,
N.
,
Ottavy
,
X.
, and
Gourdain
,
N.
,
2012
, “
Modal Decomposition for the Analysis of the Rotor-Stator Interactions in Multistage Compressors
,”
J. Thermal Sci.
,
21
(
3
), pp.
276
285
.
32.
Rienstra
,
S.
, and
Hirschberg
,
A.
,
2004
,
An Introduction to Acoustics
,
Technische Universiteit Eindhoven
,
Eindhoven, The Netherlands
.
33.
Tyler
,
J. M.
, and
Sofrin
,
T. G.
,
1962
, “
Axial Flow Compressor Noise Studies
,” Technical Report, SAE Technical Paper.
34.
Lengani
,
D.
,
Paradiso
,
B.
,
Marn
,
A.
, and
Göttlich
,
E.
,
2012
, “
Identification of Spinning Mode in the Unsteady Flow Field of a Low Pressure Turbine
,”
ASME J. Turbomach.
,
134
(
5
), p.
051032
.
35.
Simonassi
,
L.
,
Zenz
,
M.
,
Zerobin
,
S.
,
Marn
,
A.
, and
Selic
,
T.
,
2018
, “
On the Modal Analysis of Fast Response Aerodynamic Pressure Probe Data
,” Proceedings of the 24th Symposium on Measuring Techniques in Turbomachinery, Paper No.
MTT2418B22
.
36.
Zerobin
,
S.
,
Bauinger
,
S.
,
Marn
,
A.
,
Peters
,
A.
,
Heitmeir
,
F.
, and
Göttlich
,
E.
,
2017
, “
The Unsteady Flow Field of a Purged High Pressure Turbine Based on Mode Detection
,”
ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition
,
Charlotte, NC
,
June 26–30
.
37.
Jenny
,
P.
,
Abhari
,
R. S.
,
Rose
,
M. G.
,
Brettschneider
,
M.
,
Gier
,
J.
, and
Engel
,
K.
,
2013
, “
Unsteady Rotor Hub Passage Vortex Behavior in the Presence of Purge Flow in an Axial Low Pressure Turbine
,”
ASME J. Turbomach.
,
135
(
5
), p.
051022
.
38.
MATLAB
,
2019
, Version 9.7.0 (R2019b). The MathWorks Inc., Natick, MA.
39.
Sterzinger
,
P. Z.
,
Zerobin
,
S.
,
Merli
,
F.
,
Wiesinger
,
L.
,
Dellacasagrande
,
M.
,
Peters
,
A.
,
Maini
,
G.
,
Heitmeir
,
F.
, and
Göttlich
,
E.
,
2020
, “
Unsteady Flow Interactions Between a High- and Low-Pressure Turbine
,”
ASME J. Turbomach.
,
142
(
10
), p.
101012
.
40.
Dellacasagrande
,
M.
,
Sterzinger
,
P. Z.
,
Zerobin
,
S.
,
Merli
,
F.
,
Wiesinger
,
L.
,
Peters
,
A.
,
Maini
,
G.
,
Heitmeir
,
F.
, and
Göttlich
,
E.
,
2019
, “
Unsteady Flow Interactions Between a High- and Low-Pressure Turbine: Part 2–Rotor-Synchronic Averaging and Proper Orthogonal Decomposition of the Unsteady Flow Fields
,”
ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition
,
Phoenix, AZ
,
June 17–21
.
41.
Lengani
,
D.
,
Spataro
,
R.
,
Peterleithner
,
J.
, and
Göttlich
,
E.
,
2015
, “
Unsteady Flow Evolution Through a Turning Midturbine Frame Part 2: Spectral Analysis
,”
J. Propul. Power
,
31
(
6
), pp.
1597
1606
.
You do not currently have access to this content.