Abstract

In the last decade, the rotating detonation combustor (RDC) has received growing attention among the different pressure gain combustion concepts due to the simplicity of the design and the potential ease of integration in gas turbines. However, multiple technological challenges are still associated with its development. Researchers have pointed out concerns related to the heat loads determined by the high temperature and the complex flow field occurring in this kind of combustion chamber based on a small but meaningful set of experimental and numerical results. An investigation of the open literature has shown a strong sensitivity of the heat loads with multiple designs and operational parameters. The aim of this work is to provide a fundamental review of the primary drivers affecting heat load in a typical RDC in order to define basic cooling requirements for possible actual design of the combustor. Along with this, a simplified approach has been implemented for the estimation of the requirements for cold side convection cooling with respect to different heat load scenarios, shedding light on the compatibility of pure convection cooling for rotating detonation combustors. Finally, the results are used to determine guidelines for the design of a cooled and efficient RDC.

References

1.
Wolański
,
P.
,
2015
, “
Application of the Continuous Rotating Detonation to Gas Turbine
,”
Appl. Mech. Mater.
,
782
(
8
), pp.
3
12
.
2.
Anand
,
V.
, and
Gutmark
,
E.
,
2019
, “
Rotating Detonation Combustors and Their Similarities to Rocket Instabilities
,”
Prog. Energy Combust. Sci.
,
73
(
8
), pp.
182
234
.
3.
Bunker
,
R. S.
,
2017
, “
Evolution of Turbine Cooling
,”
ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition
,
Charlotte, NC
,
June 26–30
.
4.
Nassini
,
P. C.
,
Andreini
,
A.
, and
Bohon
,
M. D.
,
2022
, “
Characterization of Refill Region and Mixing State Immediately Ahead of a Hydrogen-Air Rotating Detonation Using LES
,”
Combust. Flame.
,
258
, Part 2.
5.
Nassini
,
P. C.
,
2022
, “
High-Fidelity Numerical Investigations of a Hydrogen Rotating Detonation Combustor
,”
PhD Thesis, Univesity of Florence, Firenze, Italy
.
6.
Bykovskii
,
F. A.
, and
Vedernikov
,
E. F.
,
2009
, “
Heat Fluxes to Combustor Walls During Continuous Spin Detonation of Fuel–Air Mixtures
,”
Combust. Explosion Shock Waves
,
45
(
1
), pp.
70
77
.
7.
Theuerkauf
,
S. W.
,
Schauer
,
F.
,
Anthony
,
R.
, and
Hoke
,
J.
,
2014
, “
Average and Instantaneous Heat Release to the Walls of an RDE
,”
52nd Aerospace Sciences Meeting
,
National Harbor, MD
,
Jan. 13–17
, American Institute of Aeronautics and Astronautics.
8.
Theuerkauf
,
S. W.
,
Schauer
,
F.
,
Anthony
,
R. J.
,
Paxson
,
D. E.
,
Stevens
,
C. A.
, and
Hoke
,
J.
,
2016
, “
Comparison of Simulated and Measured Instantaneous Heat Flux in a Rotating Detonation Engine
,”
54th AIAA Aerospace Sciences Meeting
,
San Diego, CA
,
Jan. 4–8
, American Institute of Aeronautics and Astronautics.
9.
Meyer
,
S. J.
,
Polanka
,
M. D.
,
Schauer
,
F.
,
Anthony
,
R. J.
,
Stevens
,
C. A.
,
Hoke
,
J.
, and
Rein
,
K.
,
2017
, “
Experimental Characterization of Heat Transfer Coefficients in a Rotating Detonation Engine
,”
55th AIAA Aerospace Sciences Meeting
,
Grapevine, TX
,
Jan. 9–13
, American Institute of Aeronautics and Astronautics.
10.
Meyer
,
S. J.
,
Polanka
,
M. D.
,
Schauer
,
F. R.
, and
Hoke
,
J. L.
,
2018
, “
Parameter Impact on Heat Flux in a Rotating Detonation Engine
,”
2018 AIAA Aerospace Sciences Meeting
,
Kissimmee, FL
,
Jan. 8–12
, American Institute of Aeronautics and Astronautics.
11.
Goto
,
K.
,
Nishimura
,
J.
,
Kawasaki
,
A.
,
Funaki
,
I.
,
Nakata
,
D.
,
Uchiumi
,
M.
, and
Higashino
,
K.
,
2019
, “
Propulsive Performance and Heating Environment of Rotating Detonation Engine With Various Nozzles
,”
J. Propul. Power
,
35
(
1
), pp.
213
223
.
12.
Stevens
,
C. A.
,
Fotia
,
M.
,
Hoke
,
J.
, and
Schauer
,
F.
,
2018
, “
Quasi Steady Heat Transfer Measurements in an RDE
,”
2018 AIAA Aerospace Sciences Meeting
,
Kissimmee, FL
,
Jan. 8–12
, American Institute of Aeronautics and Astronautics.
13.
Braun
,
J.
,
Sousa
,
J.
, and
Paniagua
,
G.
,
2018
, “
Numerical Assessment of the Convective Heat Transfer in Rotating Detonation Combustors Using a Reduced-Order Model
,”
Appl. Sci.
,
8
(
6
), p.
893
.
14.
Bach
,
E.
,
Stathopoulos
,
P.
,
Paschereit
,
C. O.
, and
Bohon
,
M. D.
,
2020
, “
Performance Analysis of a Rotating Detonation Combustor Based on Stagnation Pressure Measurements
,”
Combust. Flame
,
217
(
7
), pp.
21
36
.
15.
Stevens
,
C. A.
,
Fotia
,
M.
,
Hoke
,
J.
, and
Schauer
,
F.
,
2019
, “
An Experimental Comparison of the Inner and Outer Wall Heat Flux in an RDE
,”
AIAA Scitech 2019 Forum
,
San Diego, CA
,
Jan. 7–11
.
16.
Stathopoulos
,
P.
,
2018
, “
Comprehensive Thermodynamic Analysis of the Humphrey Cycle for Gas Turbines With Pressure Gain Combustion
,”
Energies
,
11
(
12
), p.
3521
.
17.
Salazar
,
A.
,
2006
, “
Energy Propagation of Thermal Waves
,”
Eur. J. Phys.
,
27
(
6
), pp.
1349
1355
.
18.
Special Metals
,
2022
,
Home—specialmetals.com
, https://www.specialmetals.com/, Accessed December 15, 2022.
19.
Lefebvre
,
A. H.
,
1998
,
GAS Turbine Combustion
, 2nd ed.,
CRC Press
,
Boca Raton, FL
.
20.
Downs
,
J. P.
, and
Landis
,
K. K.
,
2009
, “
Turbine Cooling Systems Design: Past, Present and Future
,”
ASME Turbo Expo 2009: Power for Land, Sea, and Air
,
Orlando, FL
,
June 8–12
.
21.
Bergman
,
T. L.
,
Lavine
,
A. S.
,
Incropera
,
F. P.
, and
DeWitt
,
D.
,
2011
,
Fundamentals of Heat and Mass Transfer 7E
,
John Wiley & Sons
,
Chichester, UK
.
22.
Vijayan
,
P. K.
,
Nayak
,
A. K.
, and
Kumar
,
N.
,
2019
, “Governing Differential Equations for Natural Circulation Systems,”
Single-Phase, Two-Phase and Supercritical Natural Circulation Systems
,
Elsevier
, pp.
69
118
.
23.
Ligrani
,
P. M.
,
Oliveira
,
M. M.
, and
Blaskovich
,
T.
,
2003
, “
Comparison of Heat Transfer Augmentation Techniques
,”
AIAA J.
,
41
(
3
), pp.
337
362
.
24.
Sousa
,
J.
,
Paniagua
,
G.
, and
Morata
,
E.
,
2017
, “
Thermodynamic Analysis of a Gas Turbine Engine With a Rotating Detonation Combustor
,”
Appl. Energy
,
195
, pp.
247
256
.
25.
Bach
,
E.
,
Paschereit
,
C. O.
,
Stathopoulos
,
P.
, and
Bohon
,
M.
,
2020
, “
RDC Operation and Performance With Varying Air Injector Pressure Loss
,”
AIAA Scitech 2020 Forum
,
Orlando, FL
,
Jan. 6–10
.
26.
Yao
,
S.
,
Tang
,
X.
, and
Wang
,
J.
,
2017
, “
Numerical Study of the Propulsive Performance of the Hollow Rotating Detonation Engine With a Laval Nozzle
,”
Inter. J. Turbo Jet-Eng.
,
34
(
1
), pp.
49
54
.
27.
Tang
,
X. M.
,
Wang
,
J. P.
, and
Shao
,
Y. T.
,
2015
, “
Three-Dimensional Numerical Investigations of the Rotating Detonation Engine With a Hollow Combustor
,”
Combust. Flame
,
162
(
4
), pp.
997
1008
.
28.
Falempin
,
F.
, and
Naour
,
B. L.
,
2009
, “
R&T Effort on Pulsed and Continuous Detonation Wave Engines
,”
16th AIAA/DLR/DGLR International Space Planes and Hypersonic Systems and Technologies Conference
,
Bremen, Germany
,
Oct. 19–22
, American Institute of Aeronautics and Astronautics.
29.
Bruening
,
G. B.
, and
Chang
,
W. S.
,
1999
, “
Cooled Cooling Air Systems for Turbine Thermal Management
,”
ASME 1999 International Gas Turbine and Aeroengine Congress and Exhibition
,
Indianapolis, IN
,
June 7–10
.
30.
Andreini
,
A.
,
Becchi
,
R.
,
Facchini
,
B.
,
Picchi
,
A.
, and
Peschiulli
,
A.
,
2017
, “
The Effect of Effusion Holes Inclination Angle on the Adiabatic Film Cooling Effectiveness in a Three-Sector Gas Turbine Combustor Rig With a Realistic Swirling Flow
,”
Int. J. Therm. Sci.
,
121
, pp.
75
88
.
31.
Tian
,
J.
,
Wang
,
Y.
,
Zhang
,
J.
, and
Tan
,
X.
,
2022
, “
Numerical Investigation on Flow and Film Cooling Characteristics of Coolant Injection in Rotating Detonation Combustor
,”
Aeros. Sci. Technol.
,
122
, p.
107379
.
32.
Yu
,
J.
,
Yao
,
S.
,
Li
,
J.
,
Huang
,
Y.
,
Guo
,
C.
, and
Zhang
,
W.
,
2022
, “
Effects of Inlet and Secondary Flow Conditions on the Flow Field of Rotating Detonation Engines With Film Cooling
,”
Int. J. Hydrogen Energy.
,
48
(
24
), pp.
9082
9094
.
33.
Goto
,
K.
,
Ota
,
K.
,
Kawasaki
,
A.
,
Itouyama
,
N.
,
Watanabe
,
H.
,
Matsuoka
,
K.
,
Kasahara
,
J.
,
Matsuo
,
A.
,
Funaki
,
I.
, and
Kawashima
,
H.
,
2022
, “
Cylindrical Rotating Detonation Engine With Propellant Injection Cooling
,”
J. Propul. Power
,
38
(
3
), pp.
410
420
.
You do not currently have access to this content.