Abstract

In gas turbines, sealing flow is extracted from the high-pressure compressor and supplied into the turbine wheel-space to suppress hot gas ingestion. Such hot gas ingestion is thought to be driven by the difference in either the static pressure or swirl between the mainstream and wheel-space flows. For the first time, experiments have been conducted in a low-speed single-stage axial turbine with a single-radial clearance rim seal and a “swirler” on the rotor disk. The objective is to evaluate the impact of enhanced wheel-space flow swirl on the rim seal performance. The swirler does not affect the mainstream flow. In the wheel-space, however, the swirler reduces static pressure; increases swirl; and improves rim seal performance (i.e., reduces the minimum sealing flowrate needed for hot gas ingestion prevention). Thus, the seal performance improvement occurs with increased difference in pressure and reduced difference in swirl between the mainstream and wheel-space flows. Therefore, it can be inferred that the rim seal performance depends more strongly on swirl than pressure. Preliminary gas turbine cycle performance studies indicate that net cycle efficiency benefits can be obtained.

References

1.
Bunker
,
R. S.
,
2017
, “
Evolution of Turbine Cooling
,”
Proceedings of the ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition
, p.
V001T51A001; 1–26
, ASME Paper No. GT2017-63205.
2.
Bohn
,
D. E.
,
Decker
,
A.
,
Ohlendorf
,
N.
, and
Jakoby
,
R.
,
2006
, “
Influence of an Axial and Radial Rim Seal Geometry on Hot Gas Ingestion Into the Upstream Cavity of a 1.5-Stage Turbine
,”
Proceedings of the ASME Turbo Expo 2006: Power for Land, Sea, and Air
, pp.
1413
1422
, ASME Paper No. GT2006-90453.
3.
Sangan
,
C. M.
,
Pountney
,
O. J.
,
Scobie
,
J. A.
,
Wilson
,
M.
,
Owen
,
J. M.
, and
Lock
,
G. D.
,
2013
, “
Experimental Measurements of Ingestion Through Turbine Rim Seals–Part III: Single and Double Seals
,”
ASME J. Turbomach.
,
135
(
5
), p.
051011
.
4.
Sangan
,
C. M.
,
Scobie
,
J. A.
,
Michael Owen
,
J.
,
Lock
,
G. D.
,
Tham
,
K. M.
, and
Laurello
,
V. P.
,
2014
, “
Performance of a Finned Turbine Rim Seal
,”
ASME J. Turbomach.
,
136
(
11
), p.
111008
.
5.
Scobie
,
J. A.
,
Teuber
,
R.
,
Sheng Li
,
Y.
,
Sangan
,
C. M.
,
Wilson
,
M.
, and
Lock
,
G. D.
,
2016
, “
Design of an Improved Turbine Rim-Seal
,”
ASME J. Eng. Gas Turbines Power.
,
138
(
2
), p.
022503
.
6.
Kim
,
Y. I.
, and
Song
,
S. J.
,
2019
, “
Unsteady Measurement of Core Penetration Flow Caused by Rotating Geometric Non-Axisymmetry in a Turbine Rotor-Stator Disc Cavity
,”
Exp. Therm. Fluid. Sci.
,
107
, pp.
118
129
.
7.
Owen
,
J. M.
,
2011
, “
Prediction of Ingestion Through Turbine Rim Seals–Part I: Rotationally Induced Ingress
,”
ASME J. Turbomach.
,
133
(
3
), p.
031005
.
8.
Owen
,
J. M.
,
2011
, “
Prediction of Ingestion Through Turbine Rim Seals–Part II: Externally Induced and Combined Ingress
,”
ASME J. Turbomach.
,
133
(
3
), p.
031006
.
9.
Sangan
,
C. M.
,
Pountney
,
O. J.
,
Zhou
,
K.
,
Wilson
,
M.
,
Michael Owen
,
J.
, and
Lock
,
G. D.
,
2013
, “
Experimental Measurements of Ingestion Through Turbine Rim Seals–Part I: Externally Induced Ingress
,”
ASME J. Turbomach.
,
135
(
2
), p.
021012
.
10.
Chilla
,
M.
,
Hodson
,
H.
, and
Newman
,
D.
,
2013
, “
Unsteady Interaction Between Annulus and Turbine Rim Seal Flows
,”
ASME J. Turbomach.
,
135
(
5
), p.
051024
.
11.
Zlatinov
,
M. B.
,
Tan
,
C. S.
,
Little
,
D.
, and
Montgomery
,
M.
,
2016
, “
Effect of Purge Flow Swirl on Hot-Gas Ingestion Into Turbine Rim Cavities
,”
J. Propul. Power
,
32
(
5
), pp.
1055
1066
.
12.
Graikos
,
D.
,
Tang
,
H.
,
Sangan
,
C. M.
,
Lock
,
G. D.
, and
Scobie
,
J. A.
,
2022
, “
A New Interpretation of Hot Gas Ingress Through Turbine Rim Seals Influenced by Mainstream Annulus Swirl
,”
ASME J. Eng. Gas Turbines Power
,
144
(
11
), p.
111005
.
13.
Choi
,
M.
,
Goo
,
B.
, and
Song
,
S. J.
,
2019
, “
Design of a Low-Speed Single-Stage Turbine Facility for Ingress Measurement
,”
Proceedings of the International Gas Turbine Congress 2019, Tokyo
, p.
ThAM12.3; 1–6
, IGTC Paper No. IGTC-2019-177.
14.
Choi
,
M.
,
Goo
,
B.
, and
Song
,
S. J.
,
2021
,
Gas Turbine Engine With Improved Sealing and Operability. Republic of Korea Patent 10-2202368, Jan. Filed Sept. 16, 2020, and issued Jan. 7
,
2021
.
15.
Qiu
,
X.
,
Japikse
,
D.
,
Zhao
,
J.
, and
Anderson
,
M. R.
,
2011
, “
Analysis and Validation of a Unified Slip Factor Model for Impellers at Design and Off-Design Conditions
,”
ASME J. Turbomach.
,
133
(
4
), p.
041018
.
16.
Daniels
,
W. A.
,
Johnson
,
B. V.
,
Graber
,
D. J.
, and
Martin
,
R. J.
,
1992
, “
Rim Seal Experiments and Analysis for Turbine Applications
,”
ASME J. Turbomach.
,
114
(
2
), pp.
426
432
.
17.
Childs
,
P. R.
,
2010
,
Rotating Flow
,
Elsevier
,
Oxford
.
18.
Sangan
,
C. M.
,
Lalwani
,
Y.
,
Owen
,
J. M.
, and
Lock
,
G. D.
,
2014
, “
Fluid Dynamics of a Gas Turbine Wheel-Space With Ingestion
,”
Proc. Inst. Mech. Eng. A: J. Power Energy
,
228
(
5
), pp.
508
524
.
19.
Picard
,
A.
,
Davis
,
R. S.
,
Gläser
,
M.
, and
Fujii
,
K.
,
2008
, “
Revised Formula for the Density of Moist Air (CIPM-2007)
,”
Metrologia
,
45
(
2
), pp.
149
155
.
20.
Coleman
,
H. W.
, and
Steele
,
W. G.
,
2018
,
Experimentation, Validation, and Uncertainty Analysis for Engineers
,
John Wiley & Sons
,
West Sussex, UK
.
21.
Chew
,
J. W.
,
Green
,
T.
, and
Turner
,
A.
,
1994
, “
Rim Sealing of Rotor-Stator Wheelspaces in the Presence of External Flow
,”
Proceedings of the ASME 1994 International Gas Turbine and Aeroengine Congress and Exposition
, p.
V001T01A041; 1–12
, ASME Paper No. 94-GT-126.
22.
Hills
,
N. J.
,
Green
,
T.
,
Turner
,
A.
, and
Chew
,
J. W.
,
1997
, “
Aerodynamics of Turbine Rim-Seal Ingestion
,”
Proceedings of the ASME 1997 International Gas Turbine and Aeroengine Congress and Exhibition
, p.
V003T09A051; 1–7
, ASME Paper No. 97-GT-268.
23.
Gentilhomme
,
O.
,
Hills
,
N. J.
,
Turner
,
A. B.
, and
Chew
,
J. W.
,
2003
, “
Measurement and Analysis of Ingestion Through a Turbine Rim Seal
,”
ASME J. Turbomach.
,
125
(
3
), pp.
505
512
.
24.
Phadke
,
U. P.
, and
Owen
,
J. M.
,
1988
, “
Aerodynamic Aspects of the Sealing of Gas-Turbine Rotor-Stator Systems: Part 3: The Effect of Nonaxisymmetric External Flow on Seal Performance
,”
Int. J. Heat Fluid Flow
,
9
(
2
), pp.
113
117
.
25.
Owen
,
J. M.
, and
Rogers
,
R. H.
,
1989
,
Flow and Heat Transfer in Rotating Disc Systems, Vol. 1: Rotor-Stator Systems
,
Research Studies Press
,
Taunton, UK
.
26.
Poncet
,
S.
,
Chauve
,
M. P.
, and
Schiestel
,
R.
,
2005
, “
Batchelor Versus Stewartson Flow Structures in a Rotor-Stator Cavity With Throughflow
,”
Phys. Fluids
,
17
(
7
), p.
075110
.
You do not currently have access to this content.