Abstract

To increase film cooling effectiveness levels downstream of film cooling holes, trenches manufactured in the thermal barrier coating can be adopted. The performance of this solution depends on the trench geometrical characteristics, namely its depth and width. A large eddy simulation (LES)-based numerical study has been performed at Korea University to investigate the effects of trench configuration on thermal protection, resulting in a 22% increase in cooling performance compared to the reference case without a trench. The present paper reports the results of an experimental investigation carried out at Bergamo University on a Plexiglass flat plate model with a set of three fan-shaped holes incorporated into an existing wind tunnel, replicating the numerical setup. Pressure-sensitive paint (PSP) technique was used to measure the adiabatic film cooling effectiveness. Besides the standard shaped hole case, the best and worst trench configurations coming from a DoE approach have been examined at various coolant to mainstream blowing ratios M in the range between 0.5 and 3. Cases at M = 1.5 were used to cross-check the prediction capability of the LES numerical simulation for the selected trenched cases. PSP and LES results are in good agreement, also with the literature data. The high depth/low width trench was shown to give an improved performance for M larger than 1.

References

1.
Bunker
,
R. S.
,
2007
, “
Gas Turbine Heat Transfer: Ten Remaining Hot Gas Path Challenges
,”
ASME J. Turbomach.
,
129
(
2
), pp.
193
201
.
2.
Syred
,
N.
, and
Khalatov
,
A.
,
2006
,
Advanced Combustion and Aerothermal Technologies
,
Springer
,
New York
.
3.
Bunker
,
R. S.
,
2005
, “
A Review of Shaped Hole Turbine Film-Cooling Technology
,”
ASME J. Heat Transf.
,
127
(
4
), pp.
441
453
.
4.
Haven
,
B. A.
, and
Kurosaka
,
M.
,
1996
, “
The Effect of Hole Geometry on Lift-Off Behavior of Coolant Jets
,”
AIAA-96-0618.
5.
Haven
,
B. A.
,
Yamagata
,
D. K.
,
Kurosaka
,
M.
,
Yamawaki
,
S.
, and
Maya
,
S.
,
1997
, “
Anti-Kidney Pair of Vortices in Shaped Holes and Their Influence on Film Cooling Effectiveness
,”
ASME 1997 International Gas Turbine and Aeroengine Congress and Exhibition
,
Orlando, FL
,
June 2–5
.
6.
Zamiri
,
A.
,
Barigozzi
,
G.
, and
Chung
,
J. T.
,
2022
, “
Large Eddy Simulation of Film Cooling Flow From Shaped Holes With Different Geometrical Parameters
,”
Int. J. Heat Mass Transf.
,
196
, p.
123261
.
7.
Zamiri
,
A.
, and
Chung
,
J. T.
,
2021
, “
Large Eddy Simulation of Compound Angle Effects on Cooling Effectiveness and Flow Structure of Fan-Shaped Holes
,”
Int. J. Heat Mass Transf.
,
178
, p.
121599
.
8.
Wittig
,
S.
,
Schulz
,
A.
,
Gritsch
,
M.
and
Thole
,
K.A.
,
1996
, “
Transonic Film-Cooling Investigations: Effect of Hole Shapes and Orientations
,”
ASME Paper No. 96-GT-222.
9.
Thole
,
K. A.
,
Gritsch
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
,
1998
, “
Flowfield Measurements for Film-Cooling Holes With Expanded Exits
,”
ASME J. Turbomach.
,
120
(
2
), pp.
327
336
.
10.
Gritsch
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
,
1998
, “
Adiabatic Wall Effectiveness Measurements of Film-Cooling Holes With Expanded Exits
,”
ASME J. Turbomach.
,
120
(
3
), pp.
549
556
.
11.
Zamiri
,
A.
,
You
,
S. J.
, and
Chung
,
J. T.
,
2020
, “
Large Eddy Simulation in the Optimization of Laidback Fan-Shaped Hole Geometry to Enhance Film-Cooling Performance
,”
Int. J. Heat Mass Transf.
,
158
, p.
120014
.
12.
Zamiri
,
A.
, and
Chung
,
J. T.
,
2022
, “
Large Eddy Simulation of Internal Coolant Crossflow Orientation Effects on Film-Cooling Effectiveness of fan-Shaped Holes
,”
Int. J. Heat Mass Transf.
,
190
, p.
122778
.
13.
Kolhi
,
A.
, and
Bogard
,
D.G.
,
1999
, “
Effect of Hole Shape on Film Cooling With Large Angle Injection
,”
ASME 1999 International Gas Turbine and Aeroengine Congress and Exhibition
,
Indianapolis, IN
,
June 7–10
.
14.
Khajehasani
,
S.
, and
Jubran
,
B.
,
2014
, “
Film Cooling From Novel Sister Shaped Single-Holes
,”
ASME Turbo Expo 2014: Turbine Technical Conference and Exposition
,
Düsseldorf, Germany
,
June 16–20
.
15.
Baheri
,
S.
,
Tabrizi
,
S. P. A.
, and
Jubran
,
B.
,
2008
, “
Film Cooling Effectiveness From Trenched Shaped and Compound Holes
,”
Heat Mass Transf.
,
44
(
8
), pp.
989
998
.
16.
Sarginson
,
J. E.
,
Guo
,
S. M.
,
Oilfield
,
M. L. G.
,
Lock
,
G. D.
, and
Rawlinson
,
A. J.
,
2002
, “
A Converging Slot-Hole Film-Cooling Geometry−Part 1: Low-Speed Flat-Plate Heat Transfer and Loss
,”
ASME J. Turbomach.
,
124
(
3
), pp.
453
460
.
17.
An
,
B.
,
Liu
,
J.
,
Zhang
,
C.
, and
Zhou
,
S.
,
2013
, “
Film Cooling of Cylindrical Hole With a Downstream Short Crescent-Shaped Block
,”
ASME J. Heat Transf.
,
135
(
3
), p.
031702
.
18.
Chi
,
Z.
,
Ren
,
J.
,
Jiang
,
H.
, and
Zang
,
S.
,
2016
, “
Geometrical Optimization and Experimental Validation of a Tripod Film Cooling Hole With Asymmetric Side Holes
,”
ASME J. Heat Transf.
,
138
(
6
), p.
061701
.
19.
Wang
,
T.
,
Chintalapati
,
S.
,
Bunker
,
R. S.
, and
Lee
,
C. P.
,
2000
, “
Jet Mixing in a Trench
,”
Exp. Therm. Fluid. Sci.
,
22
(
1–2
), pp.
1
17
.
20.
Bunker
,
R.S.
,
2002
, “
Film Cooling Effectiveness due to Discrete Holes Within a Transverse Surface Slot
,”
ASME Turbo Expo 2002: Power for Land, Sea, and Air
,
Amsterdam, The Netherlands
,
June 3–6
.
21.
Huang
,
K. N.
,
Zhang
,
J. Z.
,
Wang
,
C. H.
, and
Shan
,
Y.
,
2019
, “
Numerical Evaluation on Single-Row Trenched-Hole Film Cooling Performances on Turbine Guide Vane Under Engine Representative Conditions
,”
Numer. Heat Transf.
,
76
(
4
), pp.
198
219
.
22.
Zhang
,
R.
,
Han
,
S.
,
Song
,
Y.
,
Xing
,
J.
,
Zhou
,
L.
,
Li
,
L.
,
Zhang
,
H.
, and
Du
,
X.
,
2022
, “
Evaluation of Mist/air Film Cooling of C3X Vane With Serrate-Type Trenched Holes
,”
Ther. Sci. Eng. Prog.
,
33
, p.
101341
.
23.
Zhang
,
R.
,
Song
,
Y.
,
Han
,
S.
,
Zhou
,
L.
,
Li
,
L.
,
Zhang
,
H.
, and
Du
,
X.
,
2022
, “
Film Cooling Performance Enhancement of Serrate-Type Trenched Cooling Holes by Injecting Mist Into the Cooling Air
,”
Int J. Therm. Sci.
,
179
, p.
107631
.
24.
Albert
,
J. E.
, and
Bogard
,
D. G.
,
2013
, “
Measurements of Adiabatic Film and Overall Cooling Effectiveness on a Turbine Vane Pressure Side With a Trench
,”
ASME J. Turbomach.
,
135
(
5
), p.
051007
.
25.
Sundaram
,
N.
, and
Thole
,
K. A.
,
2008
, “
Bump and Trench Modifications to Film-Cooling Holes at the Vane Endwall Junction
,”
ASME J. Turbomach.
,
130
(
4
), p.
041013
.
26.
Sundaram
,
N.
, and
Thole
,
K.A.
,
2009
, “
Film-Cooling Flowfields With Trenched Holes on an Endwall
,”
ASME J Turbomach.
,
131
(
4
), p.
041007
.
27.
Barigozzi
,
G.
,
Franchini
,
G.
,
Perdichizzi
,
A.
, and
Ravelli
,
S.
,
2012
, “
Effects of Trenched Holes on Film Cooling of a Contoured Endwall Nozzle Vane
,”
ASME J. Turbomach.
,
134
(
4
), p.
041009
.
28.
Lu
,
Y.
,
Dhungel
,
A.
,
Ekkad
,
V.
, and
Bunker
,
R.S.
,
2009
, “
Effect of Trench Width and Depth on Film Cooling From Cylindrical Holes Embedded in Trenches
,”
ASME J Turbomach.
,
131
(
1
), p.
011003
.
29.
Lu
,
Y.
,
Ekkad
,
V.
, and
Bunker
,
R.S.
,
2008
, “
Trench Film Cooling
,”
ASME Turbo Expo 2008: Power for Land, Sea, and Air
,
Berlin, Germany
,
June 9–13
.
30.
Waye
,
S.K.
, and
Bogard
,
D.G.
,
2006
, “
High Resolution Film Cooling Effectiveness Measurements of Axial Holes Embedded in a Transverse Trench With Various Trench Configurations
,”
ASME J Turbomach.
,
129
(
2
), pp.
294
302
.
31.
Oguntade
,
H. I.
,
Andrews
,
G. E.
,
Burns
,
A. D.
,
Ingham
,
D. B.
, and
Pourkashanian
,
M.
,
2013
, “
Improved Trench Film CoolingWith Shaped Trench Outlets
,”
ASME J. Turbomach.
,
135
(
2
), p.
021009
.
32.
Song
,
T. J.
,
Park
,
S. H.
,
Kang
,
Y. J.
, and
Kwak
,
J. S.
,
2021
, “
Effects of Trench Configuration on the Film Cooling Effectiveness of a Fan-Shaped Hole
,”
Int. J. Heat Mass Transf.
,
178
, p.
121655
.
33.
Zamiri
,
A.
,
You
,
S. J.
, and
Chung
,
J. T.
,
2020
, “
Large Eddy Simulation of Unsteady Turbulent Flow Structures and Film-Cooling Effectiveness in a Laidback Fan-Shaped Hole
,”
Aerosp. Sci. Technol. J.
,
100
, p.
105793
.
34.
Zamiri
,
A.
,
You
,
S. J.
, and
Chung
,
J. T.
,
2021
, “
Surface Roughness Effects on Film-Cooling Effectiveness in a Fan-Shaped Cooling Hole
,”
Aerosp. Sci. Technol. J.
,
119
, p.
107082
.
35.
Schroeder
,
R.P.
, and
Thole
,
K.A.
,
2014
, “
Adiabatic Effectiveness Measurements for a Baseline Shaped Film Cooling Hole
,”
ASME Turbo Expo 2014: Turbine Technical Conference and Exposition
,
Düsseldorf, Germany
,
June 16–20
.
36.
Rouina
,
S.
,
Ravelli
,
S.
, and
Barigozzi
,
G.
,
2019
, “
Combined Experimental and CFD Investigation of Flat Plate Film Cooling Through Fan Shaped Holes
,”
Int. J. Turbomach. Propuls. Power
,
4
(
2
), p.
7
.
37.
Rouina
,
S.
,
Abdeh
,
H.
,
Barigozzi
,
G.
,
Odemondo
,
V.
,
Abba
,
L.
, and
Iannone
,
M.
,
2022
, “
Film Cooling Effectiveness Measurement of Fan-Shaped Holes Manufactured Using Electrical Discharge Machining Technique
,”
ASME J. Turbomach.
,
144
(
7
), p.
071008
.
38.
Abdeh
,
H.
,
Barigozzi
,
G.
,
Ravelli
,
S.
, and
Rouina
,
S.
,
2020
, “
A Parametric Investigation of Vane Showerhead Film Cooling by PSP Technique
,”
ASME J. Turbomach.
,
142
(
3
), p.
031007
.
39.
Barigozzi
,
G.
,
Mucignat
,
C.
,
Abdeh
,
H.
,
Scandella
,
D.
, and
Dolci
,
G.
,
2018
, “
Assessment of Binary PSP Technique for Film Cooling Effectiveness Measurement on Nozzle Vane Cascade With Cutback Trailing Edge
,”
Exp. Therm. Fluid Sci.
,
97
(
7
), pp.
431
443
.
40.
Whitfield
,
C. A.
,
Schroeder
,
R. P.
,
Thole
,
K. A.
, and
Lewis
,
S. D.
,
2015
, “
Blockage Effects From Simulated Thermal Barrier Coatings for Cylindrical and Shaped Cooling Holes
,”
ASME J. Turbomach.
,
137
(
9
), p.
091004
.
You do not currently have access to this content.