Abstract

Accurate prediction of heat transfer in compressor cavities is crucial to the design of efficient and reliable aircraft engines. The heat transfer affects the thermal expansion of the compressor rotor and, in turn, the tip clearance of the compressor blades. This article presents a novel, physically based predictive theoretical model of heat transfer and flow structure in an open compressor cavity, which can be used to accurately calculate disc temperatures. The radially higher region of the cavity is dominated by buoyancy effects created by the temperature difference between the hot mainstream flow and the axial throughflow used to cool the turbine. Strong interaction between the air in the cavity and this throughflow creates a mixing region at low radius. For a given geometry, the heat transfer and flow physics are governed by four parameters: the rotational Reynolds number Reϕ, the buoyancy parameter βΔT, the compressibility parameter χ, and the Rossby number Ro. The model quantifies both the buoyancy- and throughflow-induced mass and heat transfer, producing a reliable prediction of the disc and air temperatures. The model takes into account a twofold effect of the throughflow: being entrained into the cold radial plumes directly and creating a toroidal vortex in the radially lower region of the cavity. The exchange of mass between the cavity and throughflow is related to the mass flowrate in the radial plumes in the buoyancy-induced region, considering the effect of flow reversal at low Ro. The model is validated using data collected in the Bath compressor cavity rig and can be incorporated in engine design codes to robustly compute the thermal stress and expansion of the compressor rotor, contributing to more efficient engine designs.

References

1.
Owen
,
J. M.
, and
Long
,
C. A.
,
2015
, “
Review of Buoyancy-Induced Flow in Rotating Cavities
,”
ASME J. Turbomach.
,
137
(
11
), p.
111001
.
2.
Owen
,
J. M.
, and
Pincombe
,
J. R.
,
1979
, “
Vortex Breakdown in a Rotating Cylindrical Cavity
,”
J. Fluid Mech.
,
90
(
1
), pp.
109
127
.
3.
Farthing
,
P. R.
,
Long
,
C. A.
,
Owen
,
J. M.
, and
Pincombe
,
J. R.
,
1992
, “
Rotating Cavity With Axial Throughflow of Cooling Air: Flow Structure
,”
ASME J. Turbomach.
,
114
(
1
), pp.
237
246
.
4.
Long
,
C. A.
,
Miché
,
N. D. D.
, and
Childs
,
P. R. N.
,
2007
, “
Flow Measurements Inside a Heated Multiple Rotating Cavity With Axial Throughflow
,”
Int. J. Heat Fluid Flow
,
28
(
6
), pp.
1391
1404
.
5.
Fazeli
,
S. M.
,
Kanjirakkad
,
V.
, and
Long
,
C.
,
2021
, “
Experimental and Computational Investigation of Flow Structure in Buoyancy-Dominated Rotating Cavities
,”
ASME J. Eng. Gas Turbines Power
,
143
(
7
), p.
071026
.
6.
Black
,
J.
, and
Long
,
C. A.
,
1992
, “
Rotational Coherent Anti-Stokes Raman Spectroscopy Measurements in a Rotating Cavity With Axial Throughflow of Cooling Air: Oxygen Concentration Measurements.
,”
Appl. Opt.
,
31
(
21
), pp.
4291
4297
.
7.
Long
,
C. A
,
1994
, “
Disk Heat Transfer in a Rotating Cavity With An Axial Throughflow of Cooling Air
,”
Int. J. Heat and Fluid Flow
,
15
(
4
), pp.
307
316
.
8.
Günther
,
A.
,
Uffrecht
,
W.
, and
Odenbach
,
S.
,
2014
, “
The Effects of Rotation and Mass Flow on Local Heat Transfer in Rotating Cavities With Axial Throughflow
,”
Proceedings of the ASME Turbo Expo 2014: Turbine Technical Conference and Exposition, 5C: Heat Transfer
,
Düsseldorf, Germany
,
June 16–20
, p. V05CT16A026.
9.
Jackson
,
R. W.
,
Tang
,
H.
,
Scobie
,
J. A.
,
Pountney
,
O. J.
,
Sangan
,
C. M.
,
Owen
,
J. M.
, and
Lock
,
G. D.
,
2022
, “
Unsteady Pressure Measurements in a Heated Rotating Cavity
,”
ASME J. Eng. Gas. Turbines. Power.
,
144
(
4
), p.
041017
.
10.
Jackson
,
R. W.
,
Tang
,
H.
,
Scobie
,
J. A.
,
Pountney
,
O. J.
,
Sangan
,
C. M.
,
Owen
,
J. M.
, and
Lock
,
G. D.
,
2021
, “
Analysis of Shroud and Disk Heat Transfer in Aero-Engine Compressor Rotors
,”
ASME J. Eng. Gas Turbines Power
,
143
(
9
), p.
091005
.
11.
Gao
,
F.
, and
Chew
,
J. W.
,
2022
, “
Flow and Heat Transfer Mechanisms in a Rotating Compressor Cavity Under Centrifugal Buoyancy-Driven Convection
,”
ASME. J. Eng. Gas Turbines Power
,
144
(
5
), p.
051010
.
12.
Pitz
,
D. B.
,
Chew
,
J. W.
, and
Marxen
,
O.
,
2019
, “
Effect of an Axial Throughflow on Buoyancy-Induced Flow in a Rotating Cavity
,”
Int. J. Heat Fluid Flow
,
80
(
12
), p.
108468
.
13.
Saini
,
D.
, and
Sandberg
,
R. D.
,
2021
, “
Large-Eddy Simulations of High Rossby Number Flow in the High-Pressure Compressor Inter-Disk Cavity
,”
ASME J. Turbomach.
,
143
(
11
), p.
111002
.
14.
Long
,
C. A.
, and
Childs
,
P. R. N.
,
2007
, “
Shroud Heat Transfer Measurements Inside a Heated Multiple Rotating Cavity With Axial Throughflow
,”
Int. J. Heat Fluid Flow
,
28
(
6
), pp.
1405
1417
.
15.
Owen
,
J. M.
, and
Tang
,
H.
,
2015
, “
Theoretical Model of Buoyancy-Induced Flow in Rotating Cavities
,”
ASME. J. Turbomach.
,
137
(
11
), p.
111005
.
16.
Atkins
,
N. R.
, and
Kanjirakkad
,
V.
,
2014
, “
Flow in a Rotating Cavity With Axial Throughflow at Engine Representative Conditions
,”
ASME Turbo Expo 2014: Turbine Technical Conference and Exposition, Vol. 5C: Heat Transfer
,
Düsseldorf, Germany
,
June 16–20
, p. V05CT16A041.
17.
Tang
,
H.
,
Puttock-Brown
,
M. R.
, and
Owen
,
J. M.
,
2018
, “
Buoyancy-Induced Flow and Heat Transfer in Compressor Rotors
,”
ASME J. Eng. Gas Turbines Power
,
140
(
7
), p.
071902
.
18.
Jackson
,
R. W.
,
Luberti
,
D.
,
Tang
,
H.
,
Pountney
,
O. J.
,
Scobie
,
J. A.
,
Sangan
,
C. M.
,
Owen
,
J. M.
, and
Lock
,
G. D.
,
2021
, “
Measurement and Analysis of Buoyancy-Induced Heat Transfer in Aero-Engine Compressor Rotors
,”
ASME J. Eng. Gas Turbines Power
,
143
(
6
), p.
061004
.
19.
Tang
,
H.
,
Shardlow
,
T.
, and
Owen
,
J. M.
,
2015
, “
Use of Fin Equation to Calculate Nusselt Numbers for Rotating Disks
,”
ASME J. Turbomach.
,
137
(
12
), p.
121003
.
20.
Tang
,
H.
, and
Owen
,
J.
,
2023
, “
Plume Model for Buoyancy-Induced Flow and Heat Transfer in Closed Rotating Cavities
,”
ASME J. Turbomach.
,
145
(
1
), p.
011005
.
21.
Nicholas
,
T. E. W.
,
Scobie
,
J. A.
,
Lock
,
G. D.
, and
Tang
,
H.
,
2023
, “
Transient Heat Transfer and Temperatures in Closed Compressor Rotors
,”
Appl. Therm. Eng.
,
230
(
07
), p.
120759
.
22.
Lock
,
G. D.
,
Jackson
,
R. W.
,
Pernak
,
M.
,
Pountney
,
O. J.
,
Sangan
,
C. M.
,
Owen
,
J. M.
,
Tang
,
H.
, and
Scobie
,
J. A.
,
2023
, “
Stratified and Buoyancy-Induced Flow in Closed Compressor Rotors
,”
ASME J. Turbomach.
,
145
(
1
), p.
011008
.
23.
Pernak
,
M.
,
Nicholas
,
T. E. W.
,
Williams
,
J.
,
Jackson
,
R. W.
,
Tang
,
H.
,
Lock
,
G. D.
, and
Scobie
,
J. A.
,
2023
, “
Experimental Investigation of Transient Flow Phenomena in Rotating Compressor Cavities
,”
ASME J. Turbomach.
,
145
(
12
), p.
121005
.
24.
Owen
,
J. M.
, and
Rogers
,
R. H.
,
1988
,
Flow and Heat Transfer in Rotating Disc Systems, Vol. 1: Rotor-stator Systems
,
Research Studies Press, John Wiley
,
Taunton, New York
.
25.
Luberti
,
D.
,
Patinios
,
M.
,
Jackson
,
R. W.
,
Tang
,
H.
,
Pountney
,
O. J.
,
Scobie
,
J. A.
,
Sangan
,
C. M.
,
Owen
,
J. M.
, and
Lock
,
G. D.
,
2021
, “
Design and Testing of a Rig to Investigate Buoyancy-Induced Heat Transfer in Aero-engine Compressor Rotors
,”
ASME J. Eng. Gas Turbines Power
,
143
(
4
), p.
041030
.
You do not currently have access to this content.