Abstract

Substantial research exists in the literature on reducing the profile loss of transitional boundary layers over low-pressure turbine (LPT) blades via different mechanisms such as freestream turbulence, upstream wakes, and surface roughness. These mechanisms have proven to be beneficial in mitigating the separation bubble-related losses in ultra-high-lift blade designs, despite an increase in the loss due to increased turbulent wetted area (TWA). In this work, we adopt a strategy of employing surface roughness in the transitional regime to minimize the separation bubble-related losses and flush-mounted riblets downstream to further mitigate the skin-friction drag and boundary layer losses due to an increase in the TWA. Several high-fidelity scale-resolving simulations are performed on this “rough-ribbed blade surface” to discern the effect of varying the riblet spacing (s+) and height (h+). The streamwise evolution of skin-friction coefficient, boundary layer integral parameters, and shape factor are compared and contrasted among riblets of different dimensions. The instantaneous flow features and second-order statistics such as the Reynolds stress, turbulent kinetic energy, and its production are analyzed for different test cases to determine the impact of riblets on these quantities. When compared to the roughness alone configuration, the scalloped shape riblets with s+ = 17 and h+ = 22 reduced the net skin-friction drag by 7.3% and the trailing edge momentum thickness by 14.5%, thereby demonstrating the efficacy of riblets in reducing the mixing losses under adverse pressure gradients. Through an analysis of flow blockage introduced by the application of riblets, the deleterious effects of increasing the riblet height along with the necessity of optimizing the riblet ramp are highlighted.

References

1.
Vera
,
M.
,
Zhang
,
X. F.
,
Hodson
,
H.
, and
Harvey
,
N.
,
2007
, “
Separation and Transition Control on an Aft-Loaded Ultra-High-Lift LP Turbine Blade at Low Reynolds Numbers: High-Speed Validation
,”
ASME J. Turbomach.
,
129
(
2
), pp.
340
347
.
2.
Hodson
,
H. P.
, and
Howell
,
R. J.
,
2005
, “
Bladerow Interactions, Transition, and High-Lift Aerofoils in Low-Pressure Turbines
,”
Annu. Rev. Fluid Mech.
,
37
, pp.
71
98
.
3.
Opoka
,
M. M.
, and
Hodson
,
H. P.
,
2008
, “
Transition on the T106 LP Turbine Blade in the Presence of Moving Upstream Wakes and Downstream Potential Fields
,”
ASME J. Turbomach.
,
130
(
4
), p.
041017
.
4.
Rao
,
V. N.
,
Tucker
,
P.
,
Jefferson-Loveday
,
R.
, and
Coull
,
J.
,
2013
, “
Large Eddy Simulations in Low-Pressure Turbines: Effect of Wakes at Elevated Free-Stream Turbulence
,”
Int. J. Heat Fluid Flow
,
43
, pp.
85
95
.
5.
Michelassi
,
V.
,
Chen
,
L.-W.
,
Pichler
,
R.
, and
Sandberg
,
R. D.
,
2015
, “
Compressible Direct Numerical Simulation of Low-Pressure Turbines—Part II: Effect of Inflow Disturbances
,”
ASME J. Turbomach.
,
137
(
7
), p.
071005
.
6.
Vera
,
M.
,
Hodson
,
H.
, and
Vazquez
,
R.
,
2005
, “
The Effects of a Trip Wire and Unsteadiness on a High-Speed Highly Loaded Low-Pressure Turbine Blade
,”
ASME J. Turbomach.
,
127
(
4
), pp.
747
754
.
7.
Rao Vadlamani
,
N.
,
Jefferson-Loveday
,
R.
,
Tucker
,
P. G.
, and
Lardeau
,
S.
,
2014
, “
Large Eddy Simulations in Turbines: Influence of Roughness and Free-Stream Turbulence
,”
Flow Turbulence Combust.
,
92
(
1–2
), pp.
543
561
.
8.
Licari
,
A.
, and
Christensen
,
K.
,
2011
, “
Modeling Cumulative Surface Damage and Assessing Its Impact on Wall Turbulence
,”
AIAA J.
,
49
(
10
), pp.
2305
2320
.
9.
Bons
,
J. P.
,
2010
, “
A Review of Surface Roughness Effects in Gas Turbines
,”
ASME J. Turbomach.
,
132
(
2
), p.
021004
.
10.
Montomoli
,
F.
,
Hodson
,
H.
, and
Haselbach
,
F.
,
2010
, “
Effect of Roughness and Unsteadiness on the Performance of a New Low Pressure Turbine Blade at Low Reynolds Numbers
,”
ASME J. Turbomach.
,
132
(
3
), p.
031018
.
11.
Zhang
,
Y.
,
Xu
,
J.
,
Li
,
Y.
,
Qiao
,
L.
, and
Bai
,
J.
,
2022
, “
Modeling of Surface Roughness Effects on Bypass and Laminar Separation Bubble-Induced Transition for Turbomachinery Flows
,”
Phys. Fluids
,
34
(
4
), p.
044108
.
12.
Bechert
,
D.
,
Bruse
,
M.
,
Hage
,
W. V.
,
Van der Hoeven
,
J. T.
, and
Hoppe
,
G.
,
1997
, “
Experiments on Drag-Reducing Surfaces and Their Optimization With an Adjustable Geometry
,”
J. Fluid Mech.
,
338
, pp.
59
87
.
13.
Choi
,
H.
,
Moin
,
P.
, and
Kim
,
J.
,
1993
, “
Direct Numerical Simulation of Turbulent Flow Over Riblets
,”
J. Fluid Mech.
,
255
, pp.
503
539
.
14.
Walsh
,
M.
, and
Lindemann
,
A.
,
1984
, “
Optimization and Application of Riblets for Turbulent Drag Reduction
,”
22nd Aerospace Sciences Meeting
,
Reno, NV
,
Jan. 9–12
, p.
347
.
15.
Bechert
,
D.
,
Bruse
,
M.
, and
Hage
,
W.
,
2000
, “
Experiments With Three-Dimensional Riblets as an Idealized Model of Shark Skin
,”
Exp. Fluids
,
28
(
5
), pp.
403
412
.
16.
Klocke
,
F.
,
Feldhaus
,
B.
, and
Mader
,
S.
,
2007
, “
Development of an Incremental Rolling Process for the Production of Defined Riblet Surface Structures
,”
Prod. Eng.
,
1
, pp.
233
237
.
17.
Klumpp
,
S.
,
Meinke
,
M.
,
Schroder
,
W.
,
Feldhaus
,
B. R.
, and
Klocke
,
F.
,
2009
,
Turbo Expo: Power for Land, Sea, and Air, Vol. 48883
,
Orlando, FL
,
June 8–12
,
American Society of Mechanical Engineers
, pp.
81
90
.
18.
Naraparaju
,
R.
,
Schulz
,
U.
, and
Büttner
,
C.
,
2015
, “
High Temperature Oxidation Stability of Aerodynamically Optimised Riblets for Blades of Aero-Engine Applications
,”
Oxid. Met.
,
83
, pp.
133
150
.
19.
Grek
,
G.
,
Kozlov
,
V.
, and
Titarenko
,
S.
,
1996
, “
An Experimental Study of the Influence of Riblets on Transition
,”
J. Fluid Mech.
,
315
, pp.
31
49
.
20.
Strand
,
J. S.
, and
Goldstein
,
D. B.
,
2011
, “
Direct Numerical Simulations of Riblets to Constrain the Growth of Turbulent Spots
,”
J. Fluid Mech.
,
668
, pp.
267
292
.
21.
Debisschop
,
J.
, and
Nieuwstadt
,
F.
,
1996
, “
Turbulent Boundary Layer in an Adverse Pressure Gradient-Effectiveness of Riblets
,”
AIAA J.
,
34
(
5
), pp.
932
937
.
22.
Klumpp
,
S.
,
Guldner
,
T.
,
Meinke
,
M.
, and
Schröder
,
W.
,
2010
, “
Riblets in a Turbulent Adverse-Pressure Gradient Boundary Layer
,” 5th Flow Control Conference, Paper No. AIAA 2010-4706.
23.
Boomsma
,
A.
, and
Sotiropoulos
,
F.
,
2015
, “
Riblet Drag Reduction in Mild Adverse Pressure Gradients: A Numerical Investigation
,”
Int. J. Heat Fluid Flow
,
56
, pp.
251
260
.
24.
Dellacasagrande
,
M.
,
Lengani
,
D.
,
Simoni
,
D.
,
Ubaldi
,
M.
, and
Bertini
,
F.
,
2023
, “
Effects of Ribbed Surfaces on Profile Losses of Low-Pressure-Turbine Blades
,”
ASME J. Turbomach.
,
145
(
10
), p.
101009
.
25.
Dellacasagrande
,
M.
,
Verdoya
,
J.
,
Barsi
,
D.
,
Lengani
,
D.
,
Simoni
,
D.
, and
Bertini
,
F.
,
2022
, “
Effects of Streamwise Oriented Riblets on Spot Nucleation in Free-Stream Turbulence Induced Transition
,”
Exp. Therm. Fluid Sci.
,
139
, p.
110738
.
26.
Ananth
,
S. M.
,
Nardini
,
M.
,
Vaid
,
A.
,
Vadlamani
,
N. R.
, and
Sandberg
,
R. D.
,
2023
, “
Profile Loss Reduction of High-Lift Turbine Blades With Rough and Ribbed Surfaces
,”
ASME J. Turbomach.
,
145
(
2
), p.
021001
.
27.
Sandberg
,
R. D.
, and
Michelassi
,
V.
,
2022
, “
Fluid Dynamics of Axial Turbomachinery: Blade-and Stage-Level Simulations and Models
,”
Annu. Rev. Fluid Mech.
,
54
, pp.
255
285
.
28.
Coull
,
J. D.
, and
Hodson
,
H. P.
,
2011
, “
Unsteady Boundary-Layer Transition in Low-Pressure Turbines
,”
J. Fluid Mech.
,
681
, pp.
370
410
.
29.
Jarrin
,
N.
,
Benhamadouche
,
S.
,
Laurence
,
D.
, and
Prosser
,
R.
,
2006
, “
A Synthetic-Eddy-Method for Generating Inflow Conditions for Large-Eddy Simulations
,”
Int. J. Heat Fluid Flow
,
27
(
4
), pp.
585
593
.
30.
Rizzetta
,
D. P.
, and
Visbal
,
M. R.
,
2019
, “
Direct Numerical Simulation of Transition Control Via Local Dynamic Surface Modification
,”
AIAA J.
,
57
(
8
), pp.
3309
3321
.
31.
Schlanderer
,
S. C.
,
Weymouth
,
G. D.
, and
Sandberg
,
R. D.
,
2017
, “
The Boundary Data Immersion Method for Compressible Flows With Application to Aeroacoustics
,”
J. Comput. Phys.
,
333
, pp.
440
461
.
32.
Coull
,
J.
,
Thomas
,
R.
, and
Hodson
,
H.
,
2010
, “
Velocity Distributions for Low Pressure Turbines
,”
ASME J. Turbomach.
,
132
(
4
), p.
041006
.
33.
Wissink
,
J.
, and
Rodi
,
W.
,
2004
, “DNS of a Laminar Separation Bubble Affected by Free-Stream Disturbances,”
Direct and Large-Eddy Simulation V
,
R.
Friedrich
,
B. J.
Geurts
, and
O.
Métais
, eds.,
Springer
,
Munich, Germany
, pp.
213
220
.
34.
Lardeau
,
S.
,
Leschziner
,
M.
, and
Zaki
,
T.
,
2012
, “
Large Eddy Simulation of Transitional Separated Flow Over a Flat Plate and a Compressor Blade
,”
Flow Turbulence Combust.
,
88
(
1–2
), pp.
19
44
.
35.
Sandberg
,
R. D.
, and
Sandham
,
N. D.
,
2006
, “
Nonreflecting Zonal Characteristic Boundary Condition for Direct Numerical Simulation of Aerodynamic Sound
,”
AIAA J.
,
44
(
2
), pp.
402
405
.
36.
Wang
,
Y.
,
Huang
,
Y.
, and
Fu
,
S.
,
2022
, “
On the Tip Sharpness of Riblets for Turbulent Drag Reduction
,”
Acta Mech. Sin.
,
38
(
4
), pp.
1
17
.
37.
Ananth
,
S. M.
,
Nardini
,
M.
,
Vaid
,
A.
,
Kozul
,
M.
,
Vadlamani
,
N. R.
, and
Sandberg
,
R. D.
,
2023
, “
Performance of Riblets Beneath Transitional and Turbulent Boundary Layers at Low-Reynolds Numbers
,”
AIAA J.
,
61
(
5
), pp.
1986
2001
.
38.
Visbal
,
M. R.
, and
Gaitonde
,
D. V.
,
1999
, “
High-Order-Accurate Methods for Complex Unsteady Subsonic Flows
,”
AIAA J.
,
37
(
10
), pp.
1231
1239
.
39.
Vadlamani
,
N. R.
,
Tucker
,
P. G.
, and
Durbin
,
P.
,
2018
, “
Distributed Roughness Effects on Transitional and Turbulent Boundary Layers
,”
Flow Turbulence Combust.
,
100
(
3
), pp.
627
649
.
40.
Lin
,
Y.
,
Vadlamani
,
N. R.
,
Savill
,
M.
, and
Tucker
,
P. G.
,
2017
, “
Wall-Resolved Large Eddy Simulation for Aeroengine Aeroacoustic Investigation
,”
Aeronaut. J.
,
121
(
1242
), pp.
1032
1050
.
41.
Gaitonde
,
D. V.
, and
Visbal
,
M. R.
,
2000
, “
Padé-Type Higher-Order Boundary Filters for the Navier–Stokes Equations
,”
AIAA J.
,
38
(
11
), pp.
2103
2112
.
42.
Lee
,
J.-H.
, and
Sung
,
H. J.
,
2009
, “
Structures in Turbulent Boundary Layers Subjected to Adverse Pressure Gradients
,”
J. Fluid Mech.
,
639
, pp.
101
131
.
43.
Kim
,
J.
,
Moin
,
P.
, and
Moser
,
R.
,
1987
, “
Turbulence Statistics in Fully Developed Channel Flow at Low Reynolds Number
,”
J. Fluid Mech.
,
177
, pp.
133
166
.
44.
Zheng
,
X.
, and
Yang
,
H.
,
2017
, “
End-Wall Boundary Layers and Blockages of Multistage Axial Compressors Under Different Conditions
,”
J. Propul. Power
,
33
(
4
), pp.
908
916
.
45.
Denton
,
J.
,
1993
, “
Loss Mechanisms in Turbomachines
,”
J. Turbomach.
,
115
(
4
), pp.
621
656
.
46.
Chu
,
D. C.
, and
Karniadakis
,
G. E.
,
1993
, “
A Direct Numerical Simulation of Laminar and Turbulent Flow Over Riblet-Mounted Surfaces
,”
J. Fluid Mech.
,
250
, pp.
1
42
.
47.
Bannier
,
A.
,
Garnier
,
E.
, and
Sagaut
,
P.
,
2016
, “Riblets Induced Drag Reduction on a Spatially Developing Turbulent Boundary Layer,”
Progress in Wall Turbulence 2
,
M.
Stanislas
,
J.
Jimenez
, and
I.
Marusic
, eds.,
Springer
,
Lille, France
, pp.
213
224
.
48.
Sarakinos
,
S.
, and
Busse
,
A.
,
2022
, “
Investigation of Rough-Wall Turbulence Over Barnacle Roughness With Increasing Solidity Using Direct Numerical Simulations
,”
Phys. Rev. Fluids
,
7
(
6
), p.
064602
.
49.
Viswanath
,
P.
,
2002
, “
Aircraft Viscous Drag Reduction Using Riblets
,”
Prog. Aerosp. Sci.
,
38
(
6–7
), pp.
571
600
.
50.
Mele
,
B.
,
Tognaccini
,
R.
,
Catalano
,
P.
, and
de Rosa
,
D.
,
2020
, “
Effect of Body Shape on Riblets Performance
,”
Phys. Rev. Fluids
,
5
(
12
), p.
124609
.
51.
Coull
,
J. D.
, and
Hodson
,
H. P.
,
2012
, “
Predicting the Profile Loss of High-Lift Low Pressure Turbines
,”
ASME J. Turbomach.
,
134
(
2
), p.
021002
.
You do not currently have access to this content.