Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Recent evidence suggests that film cooling flows with engine-realistic mainstream Mach number have declined performance in comparison to those with conventional low-speed laboratory conditions. Consideration and understanding of these effects are fundamental to improving film cooling research. This computational study investigates the film cooling performance of a 7-7-7 shaped film cooling hole with respect to varying mainstream Mach number, with constant Reynolds number. The cases studied include mainstream Mach numbers from 0.15 to 0.75, with a fixed, engine realistic, hole Reynolds number of Red=10,100. Significant results are then evaluated against varying stagnation temperature ratio and blowing ratio. The results showed that at a blowing ratio of 1.75, the adiabatic effectiveness declines significantly with increasing mainstream Mach number. The decreased performance is due to supersonic flows and shocks in the film cooling hole that disrupt flow in the diffuser section of the hole. These characteristics are observed across all stagnation temperature ratios considered. In addition to these insights, the study discusses the importance of proper thermal scaling and definition of adiabatic effectiveness when operating at high mainstream Mach number. It is demonstrated that the effects of high-speed flow challenge the efficacy of the conventional parameters used to characterize film cooling performance.

References

1.
Liess
,
C.
,
1975
, “
Experimental Investigation of Film Cooling With Ejection From a Row of Holes for the Application to Gas Turbine Blades
,”
J. Eng. Power
,
97
(
1
), pp.
21
27
.
2.
Baldauf
,
S.
, and
Scheurlen
,
M.
,
1996
, “CFD Based Sensitivity Study of Flow Parameters for Engine Like Film Cooling Conditions,”
Volume 4: Heat Transfer; Electric Power; Industrial and Cogeneration
,
American Society of Mechanical Engineers
,
Birmingham, UK
, p.
V004T09A037
.
3.
Wittig
,
S.
,
Schulz
,
A.
,
Gritsch
,
M.
, and
Thole
,
K. A.
,
1996
, “Transonic Film-Cooling Investigations: Effects of Hole Shapes and Orientations,”
Volume 4: Heat Transfer; Electric Power; Industrial and Cogeneration
,
American Society of Mechanical Engineers
,
Birmingham, UK
, p.
V004T09A026
.
4.
Gritsch
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
,
1998
, “
Discharge Coefficient Measurements of Film-Cooling Holes With Expanded Exits
,”
ASME J. Turbomach.
,
120
(
3
), pp.
557
563
.
5.
Gritsch
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
,
1998
, “
Adiabatic Wall Effectiveness Measurements of Film-Cooling Holes With Expanded Exits
,”
ASME J. Turbomach.
,
120
(
3
), pp.
549
556
.
6.
Ligrani
,
P. M.
,
Saumweber
,
C.
,
Schulz
,
A.
, and
Wittig
,
S.
,
2001
, “
Shock Wave–Film Cooling Interactions in Transonic Flows
,”
ASME J. Turbomach.
,
123
(
4
), pp.
788
797
.
7.
Saumweber
,
C.
, and
Schulz
,
A.
,
2012
, “
Free-Stream Effects on the Cooling Performance of Cylindrical and Fan-Shaped Cooling Holes
,”
ASME J. Turbomach.
,
134
(
6
), p.
061007
.
8.
Zhou
,
W.
,
Johnson
,
B.
, and
Hu
,
H.
,
2017
, “
Effects of Flow Compressibility and Density Ratio on Film Cooling Performance
,”
J. Propul. Power
,
33
(
4
), pp.
964
974
.
9.
Oliver
,
T. A.
,
Bogard
,
D. G.
, and
Moser
,
R. D.
,
2019
, “
Large Eddy Simulation of Compressible, Shaped-Hole Film Cooling
,”
Int. J. Heat Mass Transfer
,
140
, pp.
498
517
.
10.
Gutierrez
,
D.
,
Yoon
,
C.
,
Furgeson
,
M. T.
,
Veley
,
E. M.
,
Bogard
,
D. G.
, and
Thole
,
K. A.
,
2022
, “
Experimental Evaluation of Adjoint Based Optimized Film Cooling Holes – Part I: Baseline Adiabatic and Overall Cooling Effectiveness
,”
ASME Turbo Expo 2019
,
Rotterdam, The Netherlands
.
11.
Yoon
,
C.
,
Gutierrez
,
D.
,
Furgeson
,
M. T.
, and
Bogard
,
D. G.
,
2019
, “
Experimental Evaluation of Adjoint Based Optimized Film Cooling Holes–Part I: Baseline Adiabatic and Overall Cooling Effectiveness
,”
ASME Turbo Expo 2019
,
Rotterdam, The Netherlands
.
12.
Anderson
,
J. B.
,
Boyd
,
E. J.
, and
Bogard
,
D. G.
,
2015
, “
Experimental Investigation of Coolant-to-Mainstream Scaling Parameter With Cylindrical and Shaped Film Cooling Holes
,”
ASME Turbo Expo 2015
,
Montreal, Canada
.
13.
Shih
,
T.-H.
,
Liou
,
W. W.
,
Shabbir
,
A.
,
Yang
,
Z.
, and
Zhu
,
J.
,
1994
,
A New k-ϵ Eddy Viscosity Model for High Reynolds Number Turbulent Flows, Technical Memorandum 106721
,
National Aeronautics and Space Administration
. https://ntrs.nasa.gov/citations/19950005029
14.
Fluent Theory Guide 12.0. ANSYS, Inc.
15.
Richardson
,
L. F.
, and
Gaunt
,
J. A.
,
1927
, “
VIII. The Deferred Approach to the Limit
,”
Philos. Trans. R. Soc. Lond. Ser. A
,
226
(
636–646
), pp.
299
361
.
16.
Van Driest
,
E. R.
,
1951
, “
Turbulent Boundary Layer in Compressible Fluids
,”
J. Aeronaut. Sci.
,
18
(
3
), pp.
145
160
.
17.
Furukawa
,
T.
, and
Ligrani
,
P. M.
,
2002
, “
Transonic Film Cooling Effectiveness From Shaped Holes on a Simulated Turbine Airfoil
,”
J. Thermophys. Heat Transfer
,
16
(
2
), pp.
228
237
.
18.
Nasir
,
S.
,
Bolchoz
,
T.
,
Ng
,
W.-F.
,
Zhang
,
L. J.
,
Koo Moon
,
H.
, and
Anthony
,
R. J.
,
2012
, “
ShowerHead Film Cooling Performance of a Turbine Vane at High Freestream Turbulence in a Transonic Cascade
,”
ASME J. Turbomach.
,
134
(
5
), p.
051021
.
19.
Xue
,
S.
,
Ng
,
W.
,
Ekkad
,
S.
,
Moon
,
H. K.
, and
Zhang
,
L.
,
2012
, “
The Performance of Fan-Shaped Hole Film Cooling on a Gas Turbine Blade at Transonic Conditon With High Freestream Turbulence
,”
50th AIAA Aerospace Sciences Meeting
,
Nashville, TN
.
20.
Ornano
,
F.
, and
Povey
,
T.
,
2020
, “
Theory of Non-Dimensional Groups in Film Effectiveness Studies
,”
ASME J. Turbomach.
,
142
(
4
), p.
041002
.
You do not currently have access to this content.