Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

This article presents the study of a subsonic inter-compressor S-duct. Numerical simulations are performed using large-eddy simulation (LES) based on a compressible hybrid thermal lattice Boltzmann method (LBM) implemented within the ProLB solver. Comparisons are made between the LES–LBM results, Reynolds-averaged Navier–Stokes (RANS) computations, and experimental measurements on a representative S-duct taken from the European project AIDA. Several cases with increasing complexity are addressed where the different rows surrounding the duct are gradually included in the computations. The effects of each row on the flow field development and loss levels are studied. The goal is to evaluate the ability of the LES–LBM to recover the aerodynamic behavior and the total pressure loss evolution within the duct. Results show that the LES–LBM retrieves the correct flow evolution inside the S-duct compared to the experiment and previous RANS results. The case where the upstream stator row or the low-pressure compressor stage is integrated shows an increase in total pressure loss, as previously observed in the literature, and a more developed flow field with complex flow features contributing to the loss generation. To further analyze the loss mechanism, an entropy-based approach is presented and highlights that most losses are generated close to the hub wall due to the migration of the upstream stator wakes.

References

1.
Sharma
,
M.
, and
Baloni
,
B. D.
,
2020
, “
Review on the Aerodynamics of Intermediate Compressor Duct
,”
J. Mech. Eng. Sci.
,
14
(
4
), pp.
7446
7468
.
2.
Sharma
,
M.
, and
Baloni
,
B. D.
,
2007
, Effect of Length on Compressor Inter-Stage Duct Performance, Volume 6: Turbo Expo 2007, Parts A and B of Turbo Expo: Power for Land, Sea, and Air.
3.
Naylor
,
E. M. J.
,
Dueñas
,
C. O.
,
Miller
,
R. J.
, and
Hodson
,
H. P.
,
2009
, “
Optimization of NonAxisymmetric Endwalls in Compressor S-Shaped Ducts
,”
ASME J. Turbomach.
,
132
(
1
), p.
011011
.
4.
Walker
,
A. D.
,
Mariah
,
I.
,
Tsakmakidou
,
D.
,
Vadhvana
,
H.
, and
Hall
,
C.
,
2019
, “
The Influence of Fan Root Flow on the Aerodynamic of a Low-Pressure Compressor Transition Duct
,”
ASME J. Turbomach.
,
142
(
1
), p.
011002
.
5.
Löhner
,
R.
,
2019
, “
Towards Overcoming the LES Crisis
,”
Int. J. Comput. Fluid Dyn.
,
33
(
3
), pp.
87
97
.
6.
Suss
,
A.
,
Mary
,
I.
,
Le Garrec
,
T.
, and
Marié
,
S.
,
2023
, “
Comprehensive Comparison Between the Lattice Boltzmann and Navier-Stokes Methods for Aerodynamic and Aeroacoustic Applications
,”
Comput. Fluids
,
257
(
1
), p.
105881
.
7.
Daroukh
,
M.
,
Le Garrec
,
T.
, and
Polacsek
,
C.
,
2021
, “
Low-Speed Turbofan Aerodynamic and Acoustic Prediction With an Isothermal Lattice Boltzmann Method
,”
AIAA J.
,
60
(
2
), pp.
1
19
.
8.
Nguyen
,
M.
,
Boussuge
,
J.-F.
,
Sagaut
,
P.
, and
Larroya-Huguet
,
J.-C.
,
2023
, “
Large Eddy Simulation of a Row of Impinging Jets With Upstream Crossflow Using the Lattice Boltzmann Method
,”
Int. J. Heat Mass Transfer
,
212
(
1
), p.
124256
.
9.
Krüger
,
T.
,
Kusumaatmaja
,
H.
,
Kuzmin
,
A.
,
Shardt
,
O.
,
Silva
,
G.
, and
Viggen
,
E. M.
,
2016
,
The Lattice Boltzmann Method – Principles and Practice
, Vol.
10
,
Springer
,
Switzerland
.
10.
Guo
,
S.
,
Feng
,
Y.
, and
Sagaut
,
P.
,
2020
, “
Improved Standard Thermal Lattice Boltzmann Model With Hybrid Recursive Regularization for Compressible Laminar and Turbulent Flows
,”
Phys. Fluids
,
32
(
12
), p.
126108
.
11.
Farag
,
G.
,
Coratger
,
T.
,
Wissocq
,
G.
,
Zhao
,
S.
,
Boivin
,
P.
, and
Sagaut
,
P.
,
2021
, “
A Unified Hybrid Lattice-Boltzmann Method for Compressible Flows: Bridging Between Pressure-Based and Density-Based Methods
,”
Phys. Fluids
,
33
(
8
), p.
086101
.
12.
“CS Systémes, ProLB, (http://www.prolb-cfd.com/)”.
13.
Bauer
,
M.
,
Silva
,
G.
, and
Rüde
,
U.
,
2020
, “
Truncation Errors of the D3q19 Lattice Model for the Lattice Boltzmann Method
,”
J. Comput. Phys.
,
405
(
1
), p.
109111
.
14.
Feng
,
Y.
,
Boivin
,
P.
,
Jacob
,
J.
, and
Sagaut
,
P.
,
2019
, “
Hybrid Recursive Regularized Thermal Lattice Boltzmann Model for High Subsonic Compressible Flows
,”
J. Comput. Phys.
,
394
(
1
), pp.
82
99
.
15.
Jacob
,
J.
,
Malaspinas
,
O.
, and
Sagaut
,
P.
,
2019
, “
A New Hybrid Recursive Regularised Bhatnagar-Gross-Krook Collision Model for Lattice Boltzmann Method-Based Large Eddy Simulation
,”
ASME J. Turbul.
,
19
(
11
), pp.
1051
1076
.
16.
Astoul
,
T.
,
Wissocq
,
G.
,
Boussuge
,
J.-F.
,
Sengissen
,
A.
, and
Sagaut
,
P.
,
2021
, “
Lattice Boltzmann Method for Computational Aeroacoustics on Non-Uniform Meshes: A Direct Grid Coupling Approach
,”
J. Comput. Phys.
,
447
(
1
), p.
110667
.
17.
Lévêque
,
E.
,
Toschi
,
F.
,
Shao
,
L.
, and
Bertoglio
,
J.-P.
,
2007
, “
Shear-Improved Smagorinsky Model for Large-Eddy Simulation of Wall-Bounded Turbulent Flows
,”
J. Fluid. Mech.
,
570
(
1
), pp.
491
502
.
18.
Vreman
,
B.
,
Geurts
,
B.
, and
Kuerten
,
H.
,
1997
, “
Large-Eddy Simulation of the Turbulent Mixing Layer
,”
J. Fluid. Mech.
,
339
(
1
), pp.
357
390
.
19.
Coratger
,
T.
,
Farag
,
G.
,
Zhao
,
S.
,
Boivin
,
P.
, and
Sagaut
,
P.
,
2021
, “
Large-Eddy Lattice-Boltzmann Modeling of Transonic Flows
,”
Phys. Fluids
,
33
(
11
), p.
115112
.
20.
Coratger
,
T.
,
Farag
,
G.
,
Zhao
,
S.
,
Boivin
,
P.
, and
Sagaut
,
P.
,
2010
, The Effect of an Upstream Compressor on a Non-Axisymmetric S-Duct. Volume 7: Turbomachinery, Parts A, B, and C of Turbo Expo: Power for Land, Sea, and Air.
21.
Britchford
,
K.
,
1998
, “The Aerodynamic Behaviour of an Annular S-Shaped Duct,” Ph.D. thesis, Loughborough University.
22.
Gianoli
,
T.
,
Boussuge
,
J.-F.
,
Sagaut
,
P.
, and
de Laborderie
,
J.
,
2023
, “
Development and Validation of Navier–Stokes Characteristic Boundary Conditions Applied to Turbomachinery Simulations Using the Lattice Boltzmann Method
,”
Int. J. Num. Methods Fluids
,
95
(
4
), pp.
528
556
.
23.
T.
Gianoli
,
J.-F.
Boussuge
,
P.
Sagaut
, and
J.
de Laborderie
,
2019
, Inlet and Outlet Characteristics Boundary Conditions for Large Eddy Simulations of Turbomachinery. Volume 2C: Turbomachinery of Turbo Expo: Power for Land, Sea, and Air. V02CT41A020.
24.
Yoo
,
H.
,
Bahlali
,
M. L.
,
Favier
,
J.
, and
Sagaut
,
P.
,
2021
, “
A Hybrid Recursive Regularized Lattice Boltzmann Model With Overset Grids for Rotating Geometries
,”
Phys. Fluids
,
33
(
5
), p.
057113
.
25.
Wu
,
X.
,
2017
, “
Inflow Turbulence Generation Methods
,”
Annu. Rev. Fluid. Mech.
,
49
(
1
), pp.
23
49
.
26.
Nguyen
,
M.
,
2023
, “Investigation of the Lattice Boltzmann Method for the Simulation of Turbine Active Clearance Control Systems,” Ph.D. thesis.
27.
Taylor
,
G. I.
,
1938
, “
The Spectrum of Turbulence
,”
Proc. R. Soc. London. Seri. A - Math. Phys. Sci.
,
164
(
919
), pp.
476
490
.
28.
Boudet
,
J.
,
Lévêque
,
E.
, and
Touil
,
H.
,
2022
, “
Unsteady Lattice Boltzmann Simulations of Corner Separation in a Compressor Cascade
,”
ASME J. Turbomach.
,
144
(
1
),
p. 011010
.
29.
Cambier
,
L.
,
Heib
,
S.
, and
Plot
,
S.
,
2013
, “
The Onera ElsA CFD Software: Input From Research and Feedback From Industry
,”
Mech. Indus.
,
14
(
3
), pp.
159
174
.
30.
Sicot
,
F.
,
Gomar
,
A.
,
Dufour
,
G.
, and
Dugeai
,
A.
,
2014
, “
Time-Domain Harmonic Balance Method for Turbomachinery Aeroelasticity
,”
AIAA J.
,
52
(
1
), pp.
62
71
.
31.
Sicot
,
F.
,
Gomar
,
A.
,
Dufour
,
G.
, and
Dugeai
,
A.
,
2008
, Impact of Time-Resolved Entropy Measurement on a One-and-1/2-Stage Axial Turbine Performance. Volume 6: Turbomachinery, Parts A, B, and C of Turbo Expo: Power for Land, Sea, and Air.
32.
Zlatinov
,
M. B.
,
2011
, “Secondary Air interaction With Main Flow in Axial Turbines.”
You do not currently have access to this content.