Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

The cooling configuration, sequentially combining perforated blockages (forming blockage jets) and a pin-fin array inside the trailing-edge of a turbine blade has been perceived unsuitable due to the presumed inferior thermal performance (η < 1.0). In the present study, we provide a new perspective on this particular cooling configuration, based on fluidic mechanisms, newly established in a better representative setup for blockage jets aligned with pin-fins, accounting for relevant heat transfer surfaces. To this end, heat transfer on the blockage, pin-fin, and end-wall surfaces was measured at a selected Reynolds number of ReD = 26,000 using a thermochromic liquid crystal technique. Flow field mapping by particle image velocimetry and oil–dye flow visualization were supplementally performed. We demonstrate, contrary to previous studies that the thermal performance of the blockage pin-fin configuration can be e.g., η = 1.1 if the blockages and pin-fins are arranged to maximize both elements' thermofluidic advantages. Our data further suggest that unlike conventional pin-fin configurations subjected to uniform coolant stream, the blockage pin-fin configuration can offer a better performance with fewer pin-fin rows used.

References

1.
Mitsubishi Power
,
2023
, “Mitsubishi Power’ Gas Turbines Incorporate a Number of Critical Leading-Edge Technologies,” Mitsubishi Power, https://power.mhi.com/products/gasturbines/?_ga=2.251965838.609179844.1682403422-443997724.1682403422, Accessed April 25, 2023.
2.
Moon
,
S. W.
, and
Lau
,
S. C.
,
2003
, “
Heat Transfer Between Blockages With Holes in a Rectangular Channel
,”
J. Heat Transfer
,
125
(
4
), pp.
587
594
.
3.
Lawson
,
S. A.
,
Thrift
,
A. A.
,
Thole
,
K. A.
, and
Kohli
,
A.
,
2011
, “
Heat Transfer From Multiple Row Arrays of Low Aspect Ratio Pin Fins
,”
Int. J. Heat Mass Transfer
,
54
(
17–18
), pp.
4099
4109
.
4.
VanFossen
,
G. J.
,
1982
, “
Heat-Transfer Coefficients for Staggered Arrays of Short Pin Fins
,”
J. Eng. Power
,
104
(
2
), pp.
268
274
.
5.
Goldstein
,
R. J.
, and
Chen
,
S. B.
,
1998
, “
Flow and Mass Transfer Performance in Short Pin-Fin Channels With Different Fin Shapes
,”
Int. J. Rotating Mach.
,
4
(
2
), pp.
113
128
.
6.
Baker
,
C. J.
,
1980
, “
The Turbulent Horseshoe Vortex
,”
J. Wind Eng. Ind. Aerodyn.
,
6
(
1–2
), pp.
9
23
.
7.
Schekman
,
S.
,
Atkins
,
M. D.
, and
Kim
,
T.
,
2019
, “
Local End-Wall Heat Transfer Enhancement by Jet Impingement on a Short Pin-Fin
,”
Int. J. Heat Mass Transfer
,
128
, pp.
1033
1047
.
8.
Lau
,
S. C.
,
Cervantes
,
J.
,
Han
,
J. C.
, and
Rudolph
,
R. J.
,
2008
, “
Internal Cooling Near Trailing Edge of a Gas Turbine Airfoil With Cooling Airflow Through Blockages With Holes
,”
ASME J. Turbomach.
,
130
(
3
), p.
031004
.
9.
Shin
,
S.
, and
Kwak
,
J. S.
,
2008
, “
Effect of Hole Shape on the Heat Transfer in a Rectangular Duct With Perforated Blockage Walls
,”
J. Mech. Sci. Technol.
,
22
(
10
), pp.
1945
1951
.
10.
Park
,
J. S.
,
Jo
,
Y. H.
, and
Kwak
,
J. S.
,
2016
, “
Heat Transfer in a Rectangular Duct With Perforated Blockages and Dimpled Side Walls
,”
Int. J. Heat Mass Transfer
,
97
, pp.
224
231
.
11.
Metzger
,
D. E.
,
Fan
,
C. S.
, and
Haley
,
S. W.
,
1984
, “
Effects of Pin Shape and Array Orientation on Heat Transfer and Pressure Loss in Pin Fin Arrays
,”
ASME J. Eng. Gas Turbines Power
,
106
(
1
), pp.
252
257
.
12.
Lyall
,
M. E.
,
Thrift
,
A. A.
,
Thole
,
K. A.
, and
Kohli
,
A.
,
2011
, “
Heat Transfer From Low Aspect Ratio Pin Fins
,”
ASME J. Turbomach.
,
133
(
1
), p.
011001
.
13.
Kan
,
R.
,
Ren
,
J.
, and
Jiang
,
H.
,
2014
, “
Combined Effects of Perforated Blockages and Pin Fins in a Trailing Edge Internal Cooling Duct
,”
Proceedings of the ASME Turbo Expo 2014: Turbine Technical Conference and Exposition.
,
Düsseldorf, Germany
,
June 16–20
.
14.
Kim
,
Y.
,
Choi
,
S. M.
,
Park
,
H. S.
,
Kim
,
S. W.
,
Jung
,
E. Y.
,
Park
,
J. S.
, and
Cho
,
H. H.
,
2019
, “
Heat Transfer Characteristics of the Rib Angle in the Pin-Fin Cooling Combined With Perforated Blockage
,”
Trans. Korean Soc. Mech. Eng. B
,
43
(
7
), pp.
453
461
.
15.
Ward-Smith
,
A. J.
,
1971
,
Pressure Losses in Ducted Flow
,
Butterworth
,
Oxford
.
16.
Liu
,
Y. Y.
,
Schekman
,
S. W.
,
Bhaiyat
,
T. I.
,
Lu
,
T. J.
, and
Kim
,
T.
,
2022
, “
Impingement Cooling of an Isoflux Flat Plate by Blockage Jet
,”
Appl. Therm. Eng.
,
209
(
118239
), pp.
1
12
.
17.
McNaughton
,
K. J.
, and
Sinclair
,
C. G.
,
1966
, “
Submerged Jets in Short Cylindrical Flow Vessels
,”
J. Fluid Mech.
,
25
(
2
), pp.
367
375
.
18.
Atkins
,
M. D.
, and
Kim
,
T.
,
2015
, “Isotropic-Planar Illumination for PIV Experiments,”
Exp. Fluids
,
56
(
3
), p.
63
.
19.
Kim
,
T.
,
Lu
,
T. J.
, and
Song
,
S. J.
,
2016
,
Application of Thermo-Fluidic Measurement Techniques: An Introduction
,
Butterworth-Heinemann
,
Oxford
.
20.
Kays
,
W. M.
, and
Crawford
,
M. E.
,
1993
,
Convective Heat and Mass Transfer
,
McGraw-Hill
,
New York
.
21.
Kakac
,
S.
,
Shah
,
R. K.
, and
Aung
,
W.
,
1987
,
Handbook of Single-Phase Convective Heat Transfer
,
John Wiley & Sons Inc.
,
Hoboken, NJ.
22.
Coleman
,
H. W.
, and
Steele
,
W. G.
,
2018
,
Experimentation, Validation, and Uncertainty Analysis for Engineers
,
John Wiley & Sons
,
New Jersey
.
23.
Westerweel
,
J.
,
1997
, “
Fundamentals of Digital Particle Image Velocimetry
,”
Meas. Sci. Technol.
,
8
(
12
), pp.
1379
1392
.
24.
Westerweel
,
J.
,
2000
, “
Theoretical Analysis of the Measurement Precision in Particle Image Velocimetry
,”
Exp. Fluids
,
29
(
7
), pp.
S003
S012
.
25.
Westerweel
,
J.
,
2008
, “
On Velocity Gradients in PIV Interrogation
,”
Exp. Fluids
,
44
(
5
), pp.
831
842
.
26.
Ahn
,
H. S.
,
Lee
,
S. W.
,
Lau
,
S. C.
, and
Banerjee
,
D.
,
2007
, “
Mass (Heat) Transfer Downstream of Blockages With Round and Elongated Holes in a Rectangular Channel
,”
J. Heat Transfer
,
129
(
12
), pp.
1676
1685
.
27.
Chyu
,
M. K.
,
1990
, “
Heat Transfer and Pressure Drop for Short Pin-Fin Arrays With Pin-Endwall Fillet
,”
J. Heat Transfer
,
112
(
4
), pp.
926
932
.
28.
Han
,
J. C.
,
2013
, “
Fundamental Gas Turbine Heat Transfer
,”
ASME J. Therm. Sci. Eng. Appl.
,
5
(
2
), p.
02100
7.
You do not currently have access to this content.